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Chapter 1 - Introduction to Groups
Exercises:
1.1 BASIC AXIOMS AND EXAMPLES
Let G be a group.

1. Determine which of the following binary operations are associative:

(a) the operation * on Z definedbyaxb=a—>b

a*(bxc)=a—(b—c)=(@—b)—c= (a*xb)*c = associative

(b) the operation * on R defined bya*b=a+b+ab

ax(bxc)=a+b+c+bc)+alb+c+bc)=(a+b+ab)+c+ (a+b+ab)c = (axb) *c = associative

b
(c) the operation * on Q defined by a * b = %
5a + b b+5
ax(bxc) = % while (a * b) x ¢ = ato+oc 25+ < = not associative

(d) the operation * on Z x Z defined by (a,b) * (c,d) = (ad + bc, bd)

(a,b) * ((c,d) * (e,f)) = (a,b) * (cf + de,df)
= (adf + bef + bde, bdf)
= (f(ad + bc) + bd(e), bd (f))
= (ad + bc,bd) = (e,f)
= ((a,b) % (c,d)) = (¢,f) = associative

(e) the operation * on Q — {0} defined by a b =

(5)

ax (bx*c) = % = —> = (a*xb)*c = associative
(&)

2. Decide which of the binary operations in the preceding exercise are commutative.

OISR D

(a) a=-5b=3 = a—-b=-5-3=-8whileb—a=3-(-5) =8 = not commutative
(b) a+b+ab=>b+a+bs = commutative

a+b b+a )
() = = commutative

(d) (ad + be,bd) = (cb + da,db) = commutative



a b )
(e) 5 * o = not commutative

3. Prove that addition of residue classes in Z/nZ is associative (you may assume it is well-defined).

Proof. Suppose we have @,b,¢ € Z/nZ. In order to show that these are associative under addition, we need
to show that arbitrary representatives from these residue classes are associative under addition.

Therefore,supposewehaveaEﬁ,beg,cEEsothatE*(E*E) = a+(b+c) = (@a+b)+c = (E*E)*E O

4. Prove that multiplication of residue classes in Z/nZ is associative (you may assume it is well-defined).

Proof. Suppose we have @,b,¢ € Z/nZ. In order to show that these are associative under multiplication, we
need to show that arbitrary representatives from these residue classes are associative under multiplication.

Therefore, suppose we havea € 4,b € E,c € csothata * (E *C) = a(bc) = (ab)c = (a* E) *C O
5. Prove for all n > 1 that Z/nZ is not a group under multiplication of residue classes.

Proof. The residue class 0 € Z/nZ does not have a multiplicative inverse @ such that 0 +a = 1. Therefore, for
alln > 1, Z/nZ is not a group under under multiplication of residue classes. O

6. Determine which of the following sets are groups under addition:
(a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd.

0 is the additive identity, the rational numbers are associative from Z and additive inverses also exist.
It is also closed under addition since:

t

s tRk+1)+s@2n+1) 2(tk +sn) +t+s
e+l k41

i+ D2k+ 1) 2Qnk+n+k+1D) +1

for integers t,n,s, k gives us

shows us that the denominator is still an odd number.
Therefore, this is a group.
(b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even.
0 is the additive identity, the rational numbers are associative from Z and additive inverses also exist.

It is also closed under addition since:

t S forint ; ko t(2k + 1) +s(2n) tk + sn
o + % or integers £, 1, s, k gives us 2m k) =3 S

still an even number.

shows us that the denominator is

Therefore, this is a group.

(c) the set of rational numbers of absolute value < 1.

3,3_3_,
1t152”~

Therefore, this is not a group.



(d) the set of rational numbers of absolute value > 1. The additive identity, 0, is not in the set. Therefore,
this is not a group.

0
(e) thesetof rational numbers with denominators equal to 1 or 2. 0is the additive identity ( 1 ), the rational
numbers are associative from Z and additive inverses also exist. The numbers with denominator 1 are

just Z while the numbers with denominator 2 are just Z divided by 2. Therefore, this is a group.

(f) the set of rational numbers with denominators equal to 1, 2 or 3.

5 1 17
273 %
Therefore, this is not a group.

7.LetG = {x € R|0<x < 1}andforx,y € Gletx+y be the fractional partof x+y (i.e., x*y = x+y—[x+V]
where [a] is the greatest integer less than or equal to a). Prove that = is a well-defined binary operation on
G and that G is an abelian group under * (called the real numbers mod 1).

Proof.

well-defined: Let x,y € G. Then [x + y] is equal to either 0 or 1. If [x + y] = 0 then we know that x + y < 1
andx*y=x+y—-0=x+y <lsothatx+y &€ G. If [x + y] = 1 then we know that 1 < x +y < 2and
therefore x * y = x + ¥y — 1 < 1 so that x + ¥y — 1 € G. Therefore * is a well-defined binary operation on G.

associative: If x, 1,z € G, then

X% (Y *2)

X+ Yy*z) =[x+ (y*2)]
x+W+z—[y+z])—[x+W+z-[y+z]]
x+y+z—[y+zl-[x+y+z]l+[y+z]
=x+y+z—[x+y+z]
=x+y+z—[x+yl+[x+yl-[x+y+z]
=(x+y—-[x+y)+z-[(x+y—[x+y]) +2z]
=(@*y)+z—[(x*y) +2z]

=(xx*y)*z

identity: O is the identity elementasO*x =0 +x—[x +0] =xandx*0=x+0—[x + 0] = x.

inverses: if x e Gthen (1 —x) e Gand (1 —x)*x=1—-x+x—-[1—-x+x]=1-[1]=1-1=0and
x*(l-x)=x+1-x—-[x+1-x]=1-[1]=1-1=0.

commutative: xxy =x+y—[x+yl=y+x—[y+x] =y =x.

Therefore, * is a well-defined binary operation on G and (G, #) is an abelian group. O

8.LletG={ze C|z"=1forsomen € Z*}.
Let Z1,2p € G:
(a) Prove that G is a group under multiplication (called the group of roots of unity in C).

Proof.
binary relation: z; * z, =z - z§ = 1" - 1K = 1 for n,k € Z*. Thus, z; * z, € G.



identity: 1is the identity elementas1%z; =1-2f =1-1" =landz;*1=2z}-1=1"-1=1and1 € G.
inverses: As the elements of G are already equal to the identity they are their own inverses.
commutative: z; xz, =1-1 =2z, * z;.
The roots of unity in C is an abelian group. O
(b) Prove that G is not a group under addition.
Proof. zy +z, =1+1=2¢G. O
9. LetG = {a+b\/§e R |a,be Q}.
Let x;,x, € G such that x; = a; + bl\/E and x, = a, + bz\/z.
(a) Prove that G is a group under addition.

Proof.
binary relation: x; + x, = (a; +a,) + (b + b2)\/§ e G.

identity: 0 is the additive identity for this group as 0 + x; = a; + b; V2.
inverses: —x; + x; = —a; — bl\/E +a; + bl\/z =0
This is a group. 0

(b) Prove that the nonzero elements of G are a group under multiplication. [“Rationalize the denomina-
tors” to find multiplicative inverses].

Proof.
binary relation: X1Xy = (al + bl \/E) (ﬂZ + bz\/i) = aqdy + albz\/z + azbl\/z + b1b22 = (alﬂz + b1b22) +
(a,b, + a2b1>\/§ eG.
identity: 1 is the multiplicative identity as x;1 = (a; + b; V2) 1= X1
inverses: As mentioned in the exercise lets rationalize the denominators.
(a + b\/i) (a — bﬁ) = g2 — 2b?
1
a+ b\/E
a— b\/E

a? —2b?

—b
Therefore the inverses are (az _a T ) + <a2 o ) \/5

This is a group. O
10. Prove that a finite group is abelian if and only if its group table is a symmetric matrix.
Proof. This table is called a Cayley table after the British mathematician Arthur Cayley. It is easy to see that

a finite group is abelian if and only if its group table is a symmetric matrix from the fact that if the table
is symmetric along the digonal then for row x and column y we have that the entries for xy are equal to



the entries for yx. The same argument holds for showing if all the elements of the group commute then its
group table is a symmetric matrix. O

11. Find the orders of each element of the additive group Z/12Z.

0/ =1
1] =12
2/=6
3l =4
4 =3
5] = 12
6] =2
7l =12
8l =3
9] = 4
110 =6
111 = 12

=1

-1 = [11] =2
5/ =2

7| =2

-7 =151=2
13=1=1

1] =36
2/ =18
6l =6
9 =4
110/ = 18

12| =3



|—1] = 36
|—10| = 18
|—18| = 2

14. Find the orders of the following elements of the multiplicative group (Z/36Z)* : 1,-1,5,13,-13,17.

=1
I-11=1351=6
5l =6
13| =3
-13| =123/ =6
17| =6
15. Prove that (4145 ...a,) ™' = a;ta;t, ...a7! forallay,ay, ...,a, € G.
Proof.
base case: (a*b)~! = (b7!) » (a~!) from Proposition 1(4).
induction hypothesis: Suppose (2145 ...a,_1)~! = a1, ...a7l.
induction step: Leta = (a4, ...a,,_;) and b = (a,,), then
@b =0BYH=x*@ [base case]
= ((alaz ...ﬂnil)(an))_l
= (@) (@183 ..., 1))
= (@Y ((a;t ...a7h) [induction hypothesis]
Therefore, (a1a; ...a,) "1 = a;ta;t, ...a7l forallay,ay,...,a, € G. O

16. Let x be an element of G. Prove that x> = 1 if and only if |x] is either 1 or 2.

Proof. 1f x> = 1 then either x = —lorx = 1. If x = =1 then x? = (=1)(-=1) = land | — 1] = 2. If x = 1 then
x2 = (1)(1) = 1 and [1| = 1. Therefore |x| is either 1 or 2.

Conversely, if |x| is either 1 or 2 then let |[x| = 1. An element of a group has order 1 if and only if it is the
identity thus x = 1 [Example 1 after Proposition 2]. If |x| = 2 then since in multiplicative groups R — {0} or
Q — {0} the element —1 has order 2 and all other non-identity elements have infinite order [Example 3 after
Proposition 2].

Therefore, x2 = 1. O

17. Let x be an element of G. Prove that if |x| = 1 for some positive integer n then x= = x"~1,

Proof. If |x| = n then



1= xlxn—l

x—l 1= x—lxl xn—l

x~b = 1xm!

-1 n—1

X =X

b= xn-1, O

Therefore, if [x| = n for some positive integer n then x~
18. Let x and y be elements of G. Prove that xy = yx if and only if y~'xy = x if and only if x~ 1y~ lxy = 1.

Proof. If xy = yx then

ylay =y lyx

ylxy = 1x

ylxy = x
—1,-1 1

x~ly~lay = x7lx
xly Ty =1
Now to prove the converse direction, if x~'y~1xy = 1 then

xtxly=lyy = x

ly~txy = x
ylxy =x
yylxy = yx
lxy = yx
xy = yx
Therefore, xy = yx if and only if y~'xy = x if and only if x~'y~lxy = 1. O

19. Letx € Gand leta,b € Z™.
(a) Prove that x**? = x*x and (x")? = x.
Proof. If x** then there are a + b terms of x multiplied together. That is

a+b _
XU =Xy Xy Xyt Xy Xyt Xy Xggp
= (Xq - X - X530 %) (X - X o+ Xp)
— yayb
= xx

If (x*)? then there are a terms of x multiplied together that are then themselves multiplied together b
times. That is (x?)? = x%1 . x% ... x%_ Since we know that X% = x?x? we see that x?x? = x?+% = x2% 50
that we have (x?)! = x™ . x%2 ... x® = yfta2+az++a, — yab, O

(b) Prove that (x*)~1 = x4,

Proof. From proof of part (a) above we know that (x7)? = x%, letb = —1 O
(c) Establish part (a) for arbitrary integers a and b (positive, negative or zero).

positive: we already established part (a) using arbitrary positive integers.

zero: X9+ = x0x0 — xP = 1xb = xb, 240 = xay

1=1, "0 =x0 = 1=x = 1=1.

b 0 — % = x1 = x°, (xO)b = 00 — (1)17 =¥ =



negative:

1 -1

x_’H'b =x1_1 .xg .x3 ...xu_l .xl .xz...xb
= _1 . _1 . _1 cee _1 . v
- (xl X X3 Xa )(xl X2 xh)
= (@)
— x—uxb

With same argument we can see that ¥*~? = x"x~? and that x ™% = x~7x~?.

From part (a) we know (x*)? = x 50 that we have (x™?) = x=%, (x2)=t = x4=0) = x=b and (x=*)~? =
(—a)(=b) _ ,ab
X = x",

20. For x and element in G show that x and x~! have the same order.
Proof. If |x| = a and |x~'| = bthen x* = 1 and (x~!)? = 1 so0 that x* = (x~1)". Therefore, since (x 1)’ = x~?
(cf. Exercise 19) we have that x* = x™* = a = —b but the order must be a positive number so 2 must be

equal to b. O

21. Let G be a finite group and let x be an element of G of order n. Prove that if n is odd, then x = (x?)¥ for
some k.

Proof. If x| = nand n = 2k — 1 for some k € Z+ then |x| =2k -1 =

x2k—l =1
xx 1 =1
xZky=1x = 1x
x1 =x
(x2)k = x [Exercise 19]
Therefore, if 1 is odd, then x = (x2)* for some k. O

22. If x and g are elements of the group G, prove that |x| = [¢~1xg|. Deduce that |ab| = |bal for alla,b € G.

Proof. Letx,g € Gand |x| =aand |3 = b.
x = (x—l)—l
=@ '™
— (x—lg—lg)—l
= ((x'g7Hgn™
=gxg
Since x = ¢~ 1xg, then |x| = |g~1xg].

In general we have that |ab| = |ba| since by Exercise 20 we know that |x| = |x~1| therefore |ab| = |(ab)~}| =
labl = b~tal| = |ab| = |bal. 0

23. Suppose x € G and |x| = n < oo. If n = st for some positive integers s and t, prove that |x°| = f.



Proof. |x| = n then

x" =1
xt=1
() =1
[xS| =t
Therefore, if n = st for some positive integers s and ¢, then [x°| = t. O

24. If g and b are commuting elements of G, prove that (ab)" = a"b" for n € Z. [Do this by induction for
positive # first. |

Proof.
[n = 0] is trivially true as anything raised to power of 0 is 1 therefore (ab)? = a%° =1

[n > 0]
base case: ab = ba, therefore (ab)! = bla' = (ab)! = albl.
induction hypothesis: Suppose (ab)"~1 = a"~1p"~1.

induction step: Let x = ab, then

X = xlyn-t [x*t = x°xP Exercise 19]
(ab)" = (ab)* (ab)"
(ab)" = aba""1p"1 [base case and induction hypothesis]
(ab)" = aba""1p"-1 [a and b commute]
(ab)" = aa"1pp"1
(ab)" = a"b"

[n < 0]
base case: ab = ba, therefore
@byt =b1g7t =g 1p1
induction hypothesis: Suppose (ab)~"~D = g=(*=Dp=(n=1)
induction step: Let x = ab, then
Since 2 and b are commutative elements we can interchange them so that

X" = x Iy~ = (gpyn [x~7t = x~2x~b Exercise 19]
= (ab)~*(ab)~"=1

=a 1~ lg=(=Dp-0n=D [base case and induction hypothesis]

=a lp~1g~=Dp-(n=D [a and b commute]
— a—la—(n—l)b—lb—(n—l)
— a—nb—l/l
Therefore, if a and b are commuting elements of G, then (ab)" = a"b" for n € Z. O

25. Prove that if x2 = 1 for all x € G then G is abelian.



Proof. If x> = 1 then x* = xx~! since 1 = xx~1. Therefore, for all x € G we have shown that each element is
equal to its inverse. Thus, ab = (ab)™! = b~la~! = ba. O

26. Assume H is a nonempty subset of (G, *) which is closed under the binary operation on G and is closed
under inverses, i.e., for all h and k € H,hk and h~! € H. Prove that H is a group under the operation *
restricted to H (such a subset H is called a subgroup of G).

Proof.

associative: Let h,k,s € G. h(ks) = hks = (hk)s.

inverses: given by hypothesis.

identity: hh~! = 1, where 1 is the identity element.

Therefore, H is a subgroup of G. O

27. Prove that if x is an element of the group G then {x" | n € Z} is a subgroup (cf. the preceding exercise)
of G (called the cyclic subgroup of G generated by x).

Proof.
associative: Let n,k,s € Z.

X" (xka) = x" (x)k+s
— xn+k+s

— (x)n+kxs

— (xnxk)xs

inverses: For a given n we have x" and the inverse of this is just —# so that we have x™".

identity: x’ = 1 and additionally for any n we have x"x~" = 1, where 1 is the identity element.

Therefore, this a subgroup of G. O
28. Let (A, *) and (B, ¢) be groups and let A x B be their direct product (as defined in Example 6). Verify all
the group axioms for A x B:

(a) Prove that the associative law holds: for all (a;,b;) € A x B,i = 1,2,3 (ay,b1)[(a5,b,)(a3,b3)] =
[(aq, b1)(ﬂz/ bz)](ﬂ3/ b3)

Proof.
(ay,b1)[(ay,by) (as,b3)] = (a1,by)(ay * az, by o by)
= (ay * (ay * az), by o (by 0 b3))
= ((aq * ap) * az), (by © by) ¢ b3))
= (a, % az,b, ¢ b3) (a3, b3)
= [(a1/b1)(a2/b2)](ﬂ3/b3)

(b) Prove that (1,1) is the identity of A x B



Proof. (a,b)(1,1) = (@*1,bol) = (a,b). O
(c) Prove that the inverse of (a,b) is (a=1,b™1).

Proof. (a,b)(a1,b™1) = (axa~1,bob™!) = (e f) wheree,f are the identity elements for the groups
A, B respectively. O

29. Prove that A x B is an abelian group if and only if both A and B are abelian.

Proof. If A x B is an abelian group then

(111,b1)(112, bz) = (112, bz)(ﬂ1,b1)
= (ﬂlﬂz, blbz) = (azal, b2b1)

So that aya, = a,a; and b;b, = byb;. Therefore, A and B are both abelian.

Conversely, if A and B are both abelian then a,4, = a,a;,b,b, = b,b; and

(a185,b1by) = (aya4,byb1)
= (aq,by)(ay, by)
= (azlbz)(ﬂylﬁ)

Therefore, A x B is an abelian group. O

30. Prove that the elements (a,1) and (1, b) of A x Bcommute and deduce that the order of (a, b) is the least
common multiple of |a| and |b|.

Proof.
(a,1)(1,b) = (a*1,1+b) = (a,b)(1,b)(a,1) = (1x*a,bx1l) = (a,b)

Therefore (a,1)(1,b) = (1,b)(a,1).

The identity for A x B was shown to be (1,1) [Exercise 28]. Therefore, since la| = m = 4™ = 1and
bl =n = b" =1, weseethat|(a,b)| = x = (4%, b") = (1,1). But in order for a*,b* to be equal to 1 x
needs to be a multiple of both m and n. The lowest common multiple of m and n will give us this, which is
just the lowest common multiple of |a| and |b|. O

31. Prove that any finite group G of even order contains an element of order 2. [Let {(G) be the set {g € G |
¢ # ¢~ !}. Show that #(G) has an even number of elements and every non-identity element of G — t(G) has
order 2.]

Proof. e & t(G) as it is its own inverse. Additionally, if ¢ = ¢! then |¢| = |¢7!| = 2. Therefore #(G) is the set
with elements that have order greater than 2. Thus, if ¢ € +(G) then ¢=! € #(G) so there must be an even
number of elements in t(G). Since G and #(G) both have an even number of elements so too must G — ¢(G)
and since one of the elements in G — ¢(g) is the identity element and it is the only element of order 1 the
other element must be an element of order 2. O

32. Is x is an element of finite order n in G, prove that the elements 1, x, x2,...,x"1 are all distinct. Deduce
that |x| < |G|.

Proof. Suppose x” = x? for some integersaand bwith0 <a <b <n—1. Sincel = x"x™* then 1 = x"x™* =
xbx~® = xb=2, Thus, b—a = 0so that b = a and therefore 1, x, x2, ..., x"~1 are all distinct. All of these elements
are in G so |x| < |G|. O



33. Let x be an element of finite order n in G.
(a) Prove thatif nis odd then x' # x~ foralli =1,2,...,n — 1.

Proof. Suppose x' = x™' = x? = 1. But we were given that [x| = 2i + 1 = x?*1 =1, whichisa
contradiction. Therefore x’ # x~. O

(b) Prove thatifn = 2kand 1 <i < nthenx’ = x~! if and only if i = k.
Proof. Since n = 2k we know that |x| = 2k = x2k = 1.
If x' = x~! then
= xk [(¥)*=1]
(0 = (= HF

((0)F)7*F = ((x~Hk)=k
x=x"1

Therefore, since x = x~1

xx=xlx=1

xlx =1 [x =x71]
xH2=1
(x7h? = ()2 [x* =1]
((xH2) 72 = ((F)%)~2
I
yi = xk [ = x~1]

Therefore, i = k.

Conversely, if i = k then (x')? =1 = x’ = x~! as x’ must be its own inverse from the same argument
above.

Therefore, if n = 2k and 1 <i < nthen x’ = x~1 if and only if i = k. O

34. If x is an element of infinite order in G, prove that the elements x”,n € Z are all distinct.

Proof. Suppose x* = x for some integers a < b. Since 1 = x*x™* then 1 = x*x™* = x’x™ = xb=%. Thus,
b—a = Osothatb = aand therefore x" is distinct. This works for —a < —bas well with the same argument. [J

35. If x is an element of finite order n in G, use the Division Algorithm to show that any integral power
of x equals one of the elements in the set {1, x, x2,...,x""1} (so these are all distinct elements of the cyclic
subgroup (cf. Exercise 27 above) of G generated by x).

Proof. By the Division Algorithm we know that s = ng +r for some integer s and where 0 < r < n. Therefore

xS = Ma+r
— Myt
=1-x

=xr



Therefore, s = r. Since r € {0,1,2,...,n — 1} we see that x" will equal one of the elements in the set
{1,x,x2,...,x" 1. O

36. Assume G = {1,4,b,c} is a group of order 4 with identity 1. Assume also that G has no elements of order
4 (so by Exercise 32, every element has order < 3). use the cancellation laws to show that there is a unique
group table for G. Deduce that G is abelian.

Proof. We know that ab # a and ab # b. Therefore ab = 1 or ab = c. Assume that ab = 1. Then this means
thata and b are inverses so thata? # 1 = 43 = 1 since we know it can’t be of order 1 (identity) and it can’t
have order higher than 3. Thus,ab =1 = b =a?and a* = b> = a = b?. But then we no longer have a
choice foracasac # 1 (ab=1),ac # b (b = a®), ac # ¢, ac # a. This is a contradiction so ab must be equal to
c.

We could have used the above argument to find ba as well. Furthermore the entirety can be repeated to find
ac = ca = band ¢b = bc = a. Since none of the elements were found to have order 3, this means all of the
non-identity elements of this group have order 2 so that:

a% = (bc)? = (cb)? = 1b? = (ac)? = (ca)? = 1c? = (ba)? = (ab)?> =1

Therefore, this group is abelian [Exercise 25]. O

1.2 DIHEDRAL GROUPS
In these exercises, D,,, has the usual presentation D,,, = (r,s | " = s2=1,rs = sr 1.
1. Compute the order of each of the elements in the following groups:

(a) Dg = {1,7,72,s,51, 517}

=1
[r] =3
I’ =3
Is| =2
Isr| =2
|sr2| =2
(b) Dg = {1,7,72,13,s,sr,81%, 51}
11 =1
Irl =4
=2
=4
Is| =2
Isr| =2
Isr2| =2

Isr3| =2



(c) Dy = {1,7,7%,13,1%,5,51, 572,513, s51%}
1 =1
[rl=5
r? =5
=5
Irt =5
Is| =2
lsr| =2
Isr2| =2
Isr3| =2
st =2

2. Use the generators and relations above to show that if x is any element of D,,, which is not a power of 7,

then rx = xr~1.

Proof. If x € D,, such that x is not a power of r then using the generators and relations above this means
that it can only be s as all other elements will have a power of r in them (the identity is 7" = 1). Therefore,
using the relation rs = sr™! = rx = xr~L. O

3. Use the generators and relations above to show that every element of D,, which is not a power of r has
order 2. Deduce that D,,, is generated by the two elements s and sr, both of which have order 2.

Proof. We know that the only element of D,, that is not a power of r is s [Exercise 2] and by the relation
52 = 1 we know that |s| = 2.

We can also easily see that the order of sr is 2 as well

(sr)(sr) = s(rs)r

=ssr7lr [rs = sr71]

=s2=1 [s2 =1]

Additionally, all elements of D,,, are generated from s and sr since s(sr) = s?r = r. Therefore, the unique
elements s7i, where k € {0,1} and r € {0,1,2, ...,n — 1} can all be generated from s and sr. O

4. If n = 2k is even and n > 4, show that z = ¥ is an element of order 2 which commutes with all elements

of D,,,. Show also that z is the only non-identity element of D,,, which commutes with all elements of D,,,.
[cf. Exercise 33 of Section 1.]

Proof. rkrk = 1?* = " =1 = X| = 2. We know that r* = ! and that r = r~! as it is self inversive
[Exercise 33]. Additionally we know that r* is the only power of r that has this property [Exercise 33]. Thus,
using the relation rs = sr~! we see that rs = sr and that it is the only non-identity element that commutes
with all the elements of D,,,. O



5. If nis odd and n > 3, show that the identity is the only element of D,,, which commutes with all elements
of D,,,. [cf. Exercise 33 of Section 1.]

Proof. If n is odd and n > 3 then we know that none of the elements other than the identity element are
equal to their own inverse [Exercise 33 Section 1]. Therefore, the identity element is the only element that
will be able to commute with all the elements of D,,,. O

6. Let x and y be elements of order 2 in any group G. Prove thatif t = xy then tx = xt~! (so thatif n = |xy| < oo
then x, t satisfy the same relations in G as s, doin D,,,).

Proof. x| =lyl=2 = x> =1,4y>=1 = x=x"1,y =y L. Ift = xy, then

tx = (xy)x
= x(yx)
=x(y~'x")
= x(xy)~!
= xt™1

Therefore, if t = xy then tx = xt~1. O

7. Show that (a,b | a® = b? = (ab)" = 1) gives a presentation for D,,, in terms of the two generators 2 = s and
b = sr of order 2 computed in Exercise 3 above. [Show that the relations for r and s follow from the relations
for a and b and, conversely, the relations for a and b follow from those for r and s. ]

Proof. a = s and b = sr and using the relations a> = 1,b> =1 = s? =1, (sr)?> = 1. Then

(sr)(sr) = ss [s2 =1, (sr)2 =1]
s~ lsrsr = s71ss
rsr=3s
rsrr~t = sr7!
rs = sr—1
Conversely, we can also follow the same steps backwards to arrive at 2 and b. O

8. Find the order of the cyclic subgroup of D,, generated by r (cf. Exercise 27 of Section 1).

Proof. The cyclic subgroup of D5, is {1,7,7%,...,7"~!} so that the order is . This is the same as the order for
ras|r| = n. O

In each of Exercises 9 to 13 you can find the order of the group of rigid motions in R (also called the group
of rotations) of the given Platonic solid by following the proof for the order of D,,: find the number of
positions to which an adjacent pair of vertices can be sent. Alternatively, you can find the number of places
to which a given face may be sent and, once a face is fixed, the number of positions to which a vertex on that
face may be sent.

9. Let G be the group of rigid motions in R of a tetrahedron. Show that |G| = 12.



Proof.

vertices and faces - 4 vertices and faces, 4 axes through a vertex and the center of the opposing face with 120 degree rotatior
edges - 6 edges with 3 axes through center of opposite edges with 180 degree rotations = 3 rotations

IGl=1+8+3=12. O

10. Let G be the group of rigid motions in R? of a cube. Show that |G| = 24.

Proof.

vertices: 8 vertices with 4 axes with 120 degree rotations = 8 rotations

faces: 6 faces with 3 axes with 90 degree rotations = 9 rotations

edges: 12 edges with 6 axes with 180 degree rotations = 6 rotations
IGl=1+8+9+6=24 O

11. Let G be the group of rigid motions in R? of a octahedron. Show that |G| = 24.

Proof.

vertices: 6 with 3 axis with 90 degree rotations = 9 rotations

faces: 8 with 4 axis with 120 degree rotations = 8 rotations

edges: 12 with 6 axis with 180 degree rotations = 6 rotations
IGIl=1+9+8+6=24. O

12. Let G be the group of rigid motions in R3 of a dodecahedron. Show that |G| = 60.

Proof.
vertices: 20 with 10 axis with 120 degree rotations = 20 rotations
faces: 12 with 6 axis with 72 degree rotations = 24 rotations
edges: 30 with 15 axis with 180 degree rotations = 15 rotations
|Gl =1+ 20+ 24 + 15 = 60. O

13. Let G be the group of rigid motions in R of a icosahedron. Show that |G| = 60.

Proof.

vertices: 12 with 6 axis with 72 degree rotations = 24 rotations
faces: 20 with 10 axis with 120 degree rotations = 20 rotations

edges: 30 with 15 axis with 180 degree rotations = 15 rotations

|Gl =1424+420+ 15 =60. O



14. Find a set of generators for Z.

We can generate Z with {—1,1} as all elements of Z can be created from different additive combinations of
these two numbers.

15. Find a set of generators and relations for Z/nZ.
Z/nZ = {0,1,2,...,n — 1} which can be represented with the presentation < x | x" =1 >.

16. Show that the group (x1,y; | 2 = y2 = (x1y;)? = 1) is the dihedral group D, (where x; may be replaced
be the letter r and y; by s). [Show that the last relation is the same as: x;y; = y;x7.]

Proof. If we replace x; with r and y; with s we see from the relations that x3 = > = 1and y? = s* = 1.
Additionally,

(ry)? =1
(X1y1) (1) =1
(x1y1) (Y1) Gyt = 10y, ™!
(x191) = ()™
Xy =Yy Ay
Therefore, since y? =1 = y; = y7' we see that

=11
YY1 =Y

_ -1
X1Y1 = Y14

rs = sr1 [when replacing x; with ¥ and y; with s]

Since the r? = 1 we see that this group is the dihedral group D,. O

17. Let X,,, be the group whose presentation is displayed in (1.2).

(a) Show thatif n = 3k, then X,, has order 6, and it has the same generators and relations as Dg when x is
replaced by r and y by s.

Proof. If n = 3k then x3¢ = y? = 1. From the textbook we were shown that X,, yields x = x* using the
relation xy = yx?. Therefore,

x =x*
xly = x x4
1=x3
2 =23

Therefore, k = 1. Thus, the order of D,, is 2(3k) = 2(3) = 6. Since x> = 1 we see that x~' = x? so that
when replacing x by r and y by s we see that

xy = yx?
xy = yx~1
rs =sr!

Therefore, x,, has been shown to have order 6, and it has the same generators and relations as Dg. [

(b) Show that if (3,n) = 1, then x satisfies the additional relation: x = 1. In this case deduce that X,,, has
order 2. [Use the facts that x” = 1 and x® = 1.]



Proof. Since x" = 1 and x®> = 1 we have that x” = x® but 3,n) =1 = n # 3k for some k € Z.
Therefore, for this equation to be true and still satisfy x” = 1 we must have that x = 1. Thus, n = 1 and
by deduction this means that X, has order 2. O

18. Let Y be the group whose presentation is displayed in (1.3).

(a) Show that v*> = v~1. [Use the relation: v° = 1.]

Proof.
v =1
o1 = p-1
v? =ov7!

O

(b) Show that v commutes with u3. [Show that v*u3v = u® by writing the left hand side as (v*u?) (uv) and
using the relations to reduce this to the right hand side. Then use part (a).]

Proof.

v2ulo = u

02U (uv) = u3
2202 (uv) (uo) ! = ud (uv) 1

2202 = 13u-1y-1

v~ 1u? = udo?u ! [re-written using part (a)]
o113 = 1302
u? = vuBo?
Therefore, v2u3v = vulv? and we can see that v commutes with u°. O

(c) Show that v commutes with u. [Show that u” = u and then use part (b).]

Proof. u® = u*u*u = u since u* = 1.

From part (b) we saw that u®> = vu3v? and u® = v?u3v. Since, u = v® = W33 = (vu®v?)?® and
u=u’ = w33 = (v*u%v)3, then

(Uu302)3 — ('02143?))3
(vuPv?) (vulo?) (vuBv?) = (v*ulv) (v*usv) (v2uPv)
Using the fact that v® = 1 these can be reduced to
vudududo? = v*udududo

w’v? = v*u’v

vuv? = v2uv

which shows that v commutes with u. O
(d) Show that uv = 1. [Use part (c) and the last relation. |
Proof.

uv =0°u
uv = oouu



uv = (uv) (uv) [# and v commute]
(uv) (o)~ = (uv) (uv) (uv)
1=uv

O
(e) Show thatu = 1, deduce thatv = 1, and conclude that Y = 1. [Use part (d) and the equation u*0® = 1.]
Proof. Since u* =v*> =1 = wu*0® = (1)(1) = 1. From part (d) we know that uv = 1, therefore

wrod =1

uuu(uv)ve = 1

uu(uv)v =1
u(uv) =1
u=1
Additionally, sinceuv = 1and u = 1weseethatuv =1v =1 = v =1 O

1.3 SYMMETRIC GROUPS
1. Let ¢ be the permutation
1-3 24 305 42 501
and let T be the permutation
1-5 2-3 32 44 51
Find the cycle decompositions of each of the following permutations: ¢, 7,02,07, T, and 720.

oc=(135)(24)

T=(15)(23)
0% =(153)
cT=(2534)
To = (1243)

20 =(135)(24)

2. Let o be the permutation

1-13 22 3~15 4—14 5~ 10
6—6 7 - 12 8~ 3 9—4 10-1
11 - 17 12-9 13-5 14 - 11 15— 8

and let T be the permutation

1-14 2-9 3~ 10 42 5m-12
6+—6 75 811 9-15 10— 3
11~ 8 127 13-4 14 -1 15— 13

Find the cycle of decompositions of the following permutations: ¢, 7,02, 071, 70, and 120.

c=(113510)(3158)(414117129)



T=(114)(2915134)(310)(5127)(811)
0?2 =(15)(3815)(41112)(7914)(10 13)
cT=(1113)(24)(59871015)(13 14)
To=(14)(29)(3131215115)(810 14)

20 =(1215834141112137510)

3. For each of the permutations whose cycle decompositions were computed in the preceding two exercises
compute its order.

Problem 1:
o] =2 [0200=(54123)(34521) =(12345)]
7] =2 [ToT=(53241)(53241) = (12345)]
o2 =6 [(02)00?2=(34521)(54123)=(12345)]
loT| =4 [(cT)3 00T =(14532)(15423)=(12345)]
Ito| =4 [(to)3 o010 =(31425)(24135) = (1245)]
To?l=6  [(T0?)°o10?=(54123)(34521) = (12345)]
Problem 2:
o] =12
|T| = 30
lo?l =6
loT| =6
ITol =6
lTo?| = 8

4. Compute the order of each of the elements in the following groups:

(a) S3 The elements of S; have the cycle decompositions: 1, (12), (13), (23),(123),and (132).

1 =1 since this is the identity element.
(12)=2 [((12)(12) =1)(2)(3) =1]
[(13)=2 [(13)(13)=M)(2)(3) =1]
[(13)=2 [(23)(23) =(M1)(2)(3) =1]
[(123)|=3 [(123)(123)=(132) = (123)(132) =(1)(2)(3) =1]
1(132)] =3 [(132)(132)=(123) = (132)(123) = (1)(2)(3) =1]

(b) S; The elements of S, have the cycle decompositions: 1, (12), (13), (14), (23), (24),(34),(123),(1
24),(132), (134), (142), (143), (234), (243), (12)(34), (13)(24), (14)(23), (1234), (1243),
(1324),(1342),(1423),(1432).

1] =1 since this is the identity element.
I(13)=2 [(13)(13) =1]
I(12)]=2 [(12)(12) =1]
[(14)]=2 [(14)(14) =1]
1(23)] =2 [((23)(23) =1]



1(24) =2

(B4 =2
1(123)] =3
1(124) =3
1(132)] =3
1(134)]=3
[(142)[=3
1(143)] =3
[(234)=3
1(243)]=3

[(12)(34)|=2
[(13)(24) =2
[(14)(23)]=2
[(1234) =4
[(1243) =4
[(1324) =4
[(1342) =4
[(1423) =4
[(1432) =4

(24)(24) =1]

(34)(34) = 1]

(123)(123) = (132)
(124)(124) = (142)
(132)(132) =(123)
(134)(134) = (143)
(142)(142) = (124)
(143)(143) = (134)
(234)(234) = (243)

((12)(34))((12)(34)) =1]
((13)(24))((13)(24)) =1]
((14)23))((14)(23)) =1]
(1234)(1234) = (13)(24)
(1243)(1243) = (14)(23)
(1324)(1324) = (12)(34)
(1342)(1342) = (14)(32)
(1423)(1423) = (12)(34)
(1432)(1432) = (13)(24)

[
[
[
[
[
[
[
[
[
[(243)(243)=(234)
[
[
[
[
[
[
[
[
[

Lo uuy

5. Find the order of (1128104)(213)(5117)(69).

Lety =(1128104)(213)(5117)(69)

lvl = 30 because:

2= (1841210)(57 11)
A3 =(1101248)(213)(69)
4 = (1410812)(5117)
5= (213)(5711)(69)

70 = (1128104)

(123)(132) = 1]
(124)(142) =1]
(132)(123) =1]
(134)(143) =1]
(142)(124) =1]
(143)(134) =1]
(234)(243) =1]
(243)(234) =1]

(1234)((13)(24)) = (1432)
(1243)((14)(23)) = (1342)
(1324)((12)(34)) = (1423)
(1342)((14)(32)) = (1243)
(1423)((12)(34)) = (1324)
(1432)((13)(24)) = (1234)

[ A

7 =(1841210)(213)(117)(69)
Y =(1101248)(57 11)
7’ =(1410812)(213)(69)

710 = (5117)

YM1=(1128104)(213)(5711)(69)

Y12 =(1841210)

Y3 =(1101248)(213)(5117)(69)
Y4 =(1410812)(5711)

7% =(213)(69)

y16=(1128104)(5117)
Y7 =(1841210)(213)(5711)(69)

418 =(11012438)

Y =(1410812)(213)(69)

Lo ey

(1234)(1432) =1]
(1243)(1342) =1]
(1324)(1423) =1]
(1342)(1243) =1]
(1423)(1324) =1]
(1432)(1234) =1]



720 = (57 11)

721 =(1128104)(213)(69)

722 =(1841210)(5117)

7?2 =(1101248)(213)(5711)(69)
724 =(1410812)

725 =(213)(5117)(69)

726 =(1128104)(5711)

727 =(1841210)(213)(69)

728 =(1101248)(5117)

729 =(1410812)(213)(5711)(69)
730 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10) (11)(12)(13) = 1

6. Write out the cycle decomposition of each element of order 4in S,.

(1234),(1243),(1324),(1342),(1423),(1432)

7. Write out the cycle decomposition of each element of order 2 in S,.

(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),(14)(23)
8. Prove that if ) = {1,2,3, ... } then Sq, is an infinite group (do not say oo! = o).

Proof. Since 3 = {1,2,3, ...} is a countably infinite set (i.e. this is just Z*) then there will be an infinite
amount of permutations just from the permutation of exchanging two elements and leaving all others fixed.
Therefore, we can see that S, is an infinite group as there are many more permutations than the ones we
have considered. O

9.
(a) Let o be the 12-cycle (1234567891011 12). For which positive integers i is ¢ also a 12-cycle?
i =5,7,11 (manually checked up to 12)

(b) Let 7 be the 8-cycle (1234567 8). For which positive integers i is 7’ also an 8-cycle?
i = 3,5,7 (manually checked up to 8)

(c) Let wbe the 14-cycle (1234567891011 1213 14). For which positive integers i is «' also a 14-cycle?
i =3,5,11,13 (manually checked up to 14)

10. Prove that if o is the m-cycle (a4, ...a,,), then foralli € {1,2, ..., m}, o' (a;) = a;,;, where k +1i is replaced
by its least residue mod m when k + i > m. Deduce that |o| = m.

Proof.
base case: Fori = 1 we have ¢ = ¢! and we can see for all 4, € ¢! we have that o (a;) = a;,; since a; = ;4.



induction hypothesis: For 1 <i < m — 1 suppose that ¢’ (a;) = a;;.
induction step: For i = m we have,
oM = 0_111—10-

= o" o))

=gm! (ak+1)

= Ak 1)+ (m-1)

= Qeym
Thus, 6™ (a;) = A,

Therefore, ifi € {1,2,...,m}, 0" (a;) = a;,,;, where k + i is replaced by its least residue mod m when k + i >
m. O

Additionally, it is easy to see that since we are mod m that for c™ that a; — a;_,, = a;, therefore |o| = m.

11. Let o be the m-cycle (12 ... m). Show that ¢’ is also an m-cycle if and only if i is relatively prime to m.

Proof. In an m-cycle we know that the last element must point back to the first element in the cycle, which
for an m-cycle must be 1. Thus the last element must be congruent to 1 (mod m).

Suppose that ¢’ is an m-cycle. We know that in general ¢’ (a;) = a;,; [Exercise 10] so that o? : k —» k +i —
k+2i---k+ (m—1)i. Additionally, since ¢’ is an m-cycle each k + xi must be unique so that k + xi # k + iy for
unique x,y € {0,1,...,m — 1}. This implies that (x —y)i #0 (mod m) = (x —y)it mn = mn } (x —y)i.
Therefore, m and i do not have any common divisors and therefore they must be relatively prime.

Conversely, working backwards, if m and i are relatively prime then they do not have any common divisors
so that (x —y)i £ 0 (mod m) = k + xi # k + yi for unique x,y € {0,1,...,m — 1}. Thus, each k + xi must
be unique and we know that in general ¢/ (a;) = ay,; [Exercise 10]. Thus, since all the elements k + xi are
unique modulo m we can see that we have ¢ : k — k + i — k + 2i---k + (m — 1)i, which is an m-cycle. O

12.

(a) If T =(12)(34)(56)(78)(9 10) determine whether there is a n-cycle ¢ (n > 10) with T = ¢* for some
integer k.

Proof. We know that we can only get another n-cycle if n and 7 are relatively prime [Exercise 10]. How-
ever, in this situation we actually want them not to be relatively prime as we want it to equal 7.

If we take the n-cycle for n = 10 with 0 =(1234567 89 10), we see that if i = 5 then they are not
relatively prime as 5 is a divisor of 10 and we get 0° =(16)(27)(38)(49)(5 10). Now, we can swap the
positions of the numbers to see what ¢ would need to be in order to make it so 0° = 7. For example, 2
needs to be in the position of 6, 6 needs to be in the position of 8, 3 needs to be in the position of 2, and
SO on:

c=(13579246810)
0°=(2)34)(56)(8)(910) =T O



(b) If T =(12)(3 4 5) determine whether there is an n-cycle ¢’ (n > 5) with T = ¢* for some integer k.

Proof. Suppose we have an n-cycle ¢ = (a; a, -+-a,) such that c* = 7 for some integer k. Every a; in
an n-cycle is unique and for some i we must have a; = 3. Then, using the fact that for an n-cycle that
sigma* (a;) = a,,; we see that:

T(3) =*3) = X)) =a;, =4
T(4) = 0*(4) = 0¥ (a;44) = a;,9 =5

7(5) = 0%(5) = 0¥ (@;,51) = 11,3, =3

Which, means that a; = a,,5 = 03 = 1 (where 1 is the identity cycle decomposition). Thus, if we
take the cycle element a; = 2 we see that 2 = ¢3(2) = (¢¥)3(2) = 73(2) = 1, which is a contradiction.
Therefore, no n-cycle ¢ exists such that c* = 7 for some integer k. O

13. Show that an element has order 2 in S, if and only if its cycle decomposition is a product of commuting
2-cycles.

Proof. Let T be an element in S,, with order 2. For an arbitrary m-cycle we know that c*(a,) = a,,; and for
7 we know that all of its cycles will have ¢?(a;) = a,,, = a; since 72 = 1. Therefore, all its cycles will be
2-cycles (up to identity). Additionally, 4; and a;,; only belong to one cycle because if 4, 1 a; we would not
have ¢?(a;) = a;,, = a;. Therefore, the cycle decomposition of T must be a product of commuting 2-cycles
(up to identity).

Conversely, if a cycle decomposition is a product of commuting 2-cycles then we know that a; — a;,; — 4;
so that for all a; we have a;,, = a; so that the order of this cycle decomposition is 2. O

14. Let p be a prime. Show that an element has order p in S,, if and only if its cycle decomposition is a product
of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.

Proof. Let T be an element of order pin S,,. Each element of S,, has 1 elements (these are not always explicitly
written with cycle notation but they are still there nonetheless). Since p < n, if p = n then the element T
would need to be a p-cycle because || = p = 1°(4;) = a;. If p < n, then p must a multiple of # so that
pk = n for some integer k. Like before, |T| = p = 7V (a;) = a, for all 4; € T, which implies that we have k
p-cycles that are disjoint and can commute with one another.

Conversely, if the cycle decomposition of T (we don’t yet know its order at this point) is a product of com-
muting p-cycles then we know that pk = n for some integer k since each element of S, has n elements.
Since we have k disjoint p-cycles, and it is know that c*(a;) = a;, for an arbitrary m-cycle, we know that
77 (a;) = a;. Therefore, |T| = p. O

Example when p is not prime:
The element (12)(3 4 5) from S5 has order 6 and obviously it is not a product of commuting 6-cycles.

15. Prove that the order of an element in 5,, equals the least common multiple of the lengths of the cycles in
its cycle decomposition. [Use Exercise 10 and Exercise 24 of Section 1.]

Proof. Let T € S,,. To find the order of T we need 7! = 1 for some integer ¢. In order for this to happen all
of the cycles in T must have the condition that a;,, = a; for a cycle of length k and where t = nk. That is, ¢
must be a multiple of the length of each of the cycles of T. From , We know that an arbitrary m-cycle ¢ has
the property c*(a;) = a;,, [Exercise 10] and that a,,; = 4, if the m-cycle is of length k, i.e., that m = k. All of
the cycles of T might not have the same length so in order to have the condition that 4, , = a, take  to be the



least common multiple of the lengths of the cycles of T. Then t* = (0,05 - - - 7,,)! = oio} -+ - o}, and since
t is a multiple of length of each o; our condition a,,,; = a; will be met and therefore the order of an element
in S, is equal to the least common multiple of the length of the cycles in its cycle decomposition. O

16. Show that if n > m then the number of m-cycles in S, is given by

nm—-—1)n-1)---(n—m+1)
m

[ Count the number of ways of forming an m-cycle and divide by the number of representations of a particular
m-cycle.]

Proof. The number of ways of choosing m items from 7 items can be found using the multiplicative formula
m
for the binomial coefficient (n) = n_' _ Dn=2) - zm+ 1) . The numerator gives the number
m m! mm—-—1)(m—-2)---1
of ways to select a sequence of m distinct objects, retaining the order of selection, from a set of # objects. The
denominator counts the number of distinct sequences that define the same m-combination when order is
disregarded. Since we don’t want to disregard order, as the cycles in a cycle decomposition are dependent
on order but not cyclical permutation of the numbers in the cycle themselves, we only want to divide by m

here and not m!. This then gives us:

nm—-1)n-1)---(n—m+1)
m

as intended. 0

17. Show that if n > 4 then the number of permutations in S, which are the product of two disjoint 2-cycles
isnin—1)(n—-2)(n—-3)/8.

Proof. Suppose that n > 4 and consider the product of two 2-cycles:
(a1 a3)(az as)

In succession, there are n ways to choose a,, n — 1 ways to choose a,, n — 3 ways to choose a3 and n — 3 ways
to choose a4 such that there are:
nm—1)n-2)(n—-23)

such choices. However, since the cycle (4, a,) = (a, a;), we see that we have counted twice so we should
divide by 2. The same logic applies for (a3 a4).

We aren’t done yet. Additionally, the order of the cycles themselves doesn’t matter as they are disjoint and
can commute. That is, (a; a,) (a3 a4) = (a3 a4)(a; a,), so we should divide by 2 once again.

Therefore we have n(n — 1) (n — 2)(n — 3)/8. O

18. Find all the numbers n such that S contains an element of order n. [Use Exercise 15.]

It is easy to see that S5 will have elements with orders 1, 2, 3, 4, and 5. However, since S5 can also have a cycle
decomposition of a 2-cycle and 3-cycle, we know that S5 will also contain elements with order 6 [Exercise
15]. Therefore, S5 contains elements with order 1, 2, 3, 4, 5, and 6.

19. Find all the numbers n such that S, contains an element of order n. [Use Exercise 15.]

In addition to the orders of the numbers 1 through 7 we can also get combinations of 3-cycle with a 4-cycle
as well as combinations of 2-cycle with a 5-cycle [Exercise 18]. Therefore, S, contains elements with order
1,2,3,4,5,6,7,10, and 12.



20. Find a set of generators and relations for S;.
The elements of S; have the cycle decompositions: 1, (12), (13), (23), (123),and (13 2) [Exercise 4].
All of the 2-cycles have order 2 and all of the 3-cycles have order 3 so that we have the relations:

r3 = s> = 1, where we have used r for a 3-cycle and s for a 2-cycle. If it already isn’t apparent, S; is isomorphic
to the dihedral group of order 6 D.
As such we also have the additional relation rs = sr~1.

Therefore, for the set of generators and relations for S; we have the same presentation as the dihedral group
of order 6:
r,s|rP=s2=1,rs =sr1)

1.4 GROUPS
Let Fbeafield and letn € Z™.

1. Prove that |GL, (F,)| = 6.
Proof. Since g = |F,| = 2 and n = 2 we see that |GL, (F,)| = (22 —1)(2> - 21) = 6. O

2. Write out all the elements of GL, (F,) and compute the order of each element.

The elements of GL, (F,) are the 2 x 2 invertible matrices over the field [, which are the integers modulo 2.
Therefore, the entries in the matrices are either 0 or 1.

(o 2} oo a) G2l Go) ()

((1) (1)) = 1 since thisisthe identity matrix.

(B o]-2 10 56 5)-6 1)

6 =[G D6 1)=6 1)
4O (G D0 D=62)
(o)l [ o) 0) (o) =00 1)
O =0 D06 D=8

3. Show that GL, (F,) is non-abelian.

1 1 1 0 0 1 . (1 1
LetA_<1 O) andB_(1 1>AB_<1 0) whﬂeBA_<O 1)

Therefore, GL,(F,) is non-abelian. O

Proof.



4. Show that if n is not prime then Z/nZ is not a field.

contrapositive. Suppose Z/nZ is a field. Then for all a such that 0 < a < n there exists a b such that ab = 1
Thus, ab + kn = 1. Therefore gcd(a,n) =1for0 <a <n = nis prime. O

5. Show that GL, (F) is a finite group if and only if F has a finite number of elements.

Proof. Suppose that GL, (F) is a finite group. Therefore, GL, (F) must have a finite number of elements. The
only way this can happen is if the field F is finite as the entries of the matrices are over these elements and
in the case of an infinite field F we would have infinite elements in GL, (F).

Conversely, if F has a finite number of elements then since GL,(F) is composed of matrices using these
elements there must be a finite number of matrices constructed using these entries. O

6. If |F| = q is finite prove that |GL, (F)| < q”z.

Proof. For an n x n matrix, each of its entries can be g different possibilities giving a total of q"* possibilities.
However, we know that for the general linear group that some of these entries will lead to a matrix that isn’t
invertible and therefore would not be counted. Therefore, |GL,, (F)| < q”z. O

7. Let p be a prime. Prove that the order of GL,(F ) is p* —p® —p? +p (do not just quote the order formula in
this section). [Subtract the number of 2 x 2 matrices which are not invertible from the total number of 2 x 2
matrices over F,. You may use the fact that a 2 x 2 matrix is not invertible if and only if one row is a multiple
of the other.]

Proof. Since |F,| = p and n = 2 we see that a matrix in GL,(F,) can have p* variants [Exercise 6 had g’
pl =P 2l p q
possibilities before subtracting]. Now, we need to subtract the amount of matrices that are not invertible.

A 2 x 2 matrix Z Z will not be invertible if ad — bc = 0 = ad = bc Looking at ad first we see that

ad = bc = ad:kforsomeke]Fp.

If k = 0, then there are p choices each for 2 and p but we only need one of the cases when either a or b are zero
so we subtract 1. That is, there are (2p — 1) choices for ad = 0. From the same reasoning, we have (2p — 1)
choices for bc = 0. When k # 0 there are (p — 1) choices of 2 and d that add up to k. With the same reasoning
for bc = k we have another (p — 1) choices. Lastly, we need to take into account that for k itself, there are
(p — 1) choices.

Therefore, all together we have
Q=12+ @p-1)°=4p> —4p+1+p>-3p*> +3p—-1=p> +p> —p
non-invertible matrices. Subtracting this from the p* variants that we calculated before gives the desired

formula p* — p> — p? +p. O

8. Show that GL,, (F) is non-abelian for any n > 2 and any F.

_(m b _ (2 b
Proof. Let A = (Cl d1> and B = (Cz d2>'

_ ([ayay + bycp]  [a1by + byd,] _ ([axay +bycq]  [ayhy + bydy ]
Then, AB = ([01‘12 +dic]  [e1by +dqd,] and BA = [caay +dycy]  [caby +dpdq])



Looking at the top left corner entry in AB and BA we see that [aa, + bycy] # [a,a1 + byci1if bicy # bycy. As
there can obviously be matrices where this condition exists, and that even in the event that n > 2 we could
still have the condition b,c, # b,c; in the sum of the entry under investigation. Additionally, as 0 and 1 are
elements of any field, we see that this condition can exist with simply having b;c, = 1 and b,c; = 0 so that
GL,, (F) is non-abelian for any n > 2 and any F. O

9. Prove that the binary operation of matrix multiplication of 2 x 2 matrices with real number entries is
associative.

_(m b _ (%2 by _ (95 bs
Proof. Let A = (Cl d1> and B = (Cz d2> and C = (C3 d, )

_ (laqay + bycy]  [ayby + byd,] _ ([agaz + bycs]  [axbs + byds]
Then, AB = ([c1a2 +dicy] [eyby + dydy] and BC = [Cois + dycs]  [Cabs + dyds] )

A(BC) — ([ﬂ] (a2ﬂ3 + b2C3) + b1 (C2a3 + d2C3)] [ﬂl (ﬂ2b3 + b2d3) + bl (C2b3 + d2d3)]>
[c1(aza3 + bycz) + dq(coa3 + dycz)]  [cq(aybs + byds) + dy(cybs + dyds)]

[a1a,a3 + a1byc3 + bicyas + bidycz]  [aga,b3 + a1byds + bicybs + bidyds]
A(BC) = ]

[c1a0a5 + ¢1bycs + dicyas + didycs]  [c1a,05 + c1byds + dicobs + didyds

(AB)C = ([(ﬂﬂz +bico)az + (a1by + bydy)es] [(ayay + bycp)bs + (a1b; + b1d2)d3]>

[(c1ay + dicy)as + (c1by + didy)cs]  [(c1ay + dicy)bs + (c1by + dqdy)d;5]

(AB)C = ([a1a2a3 + bycahiy + aybycsy + bydycs]  [aqa,b5 + bycybs + a;byds + b1d2d3])
h ]

[C1a585 + d1Caa3 + c1baCs + didacs]  [cra5b5 + dicybs + c1byds + didyds

Therefore, (AB)C = A(BC). O

10. Let G = {(g lz) la,b,ce R,a+0,c + O}.

0 ¢ 0 ¢

a; by\(ay, by\ _[(aa, a;by+Dbic,
0 ¢;)\0 ) L O €16

Since botha; # O and a, # 0 = a4, # 0. Same goes forc; # Oandc, # 0 = c¢c, # 0. It is also
easy to see thata;b, + byc, € R as R is a field (so closed under addition and multiplication). O

(a) Compute the product of (al b1> and (az b2> to show that G is closed under matrix multiplication.

Proof.

a

(b) Find the matrix inverse of (0

i) and deduct that G is closed under inverses.

1 /c —b
-1 _
A _ac<0 a)

1
det(A) = P isnonzero so A is invertible. a and c swapped places and are both nonzero. —b is obviously

Proof.

in R. Therefore, A~! € G and G is closed under inverses. O

(c) Deduce that G is a subgroup of GL,(R) [Exercise 26, Section 1].



Proof. Since G is closed under multiplication and inverses by parts (a) and (b) we now need to show
that it is associative and contains the identity element.

associative: LetA = [ ") andB = ("2 2. From part (a) we saw that AB = | 1172 mba +bicy)
0 ¢« 0 ¢ 0 c16p
az by

LetC = ( ), then
0 ¢

(AB)C = a4y ayby + b1y (a3 b3\ _ (@axa3  ayayb5 + agbycs + bycycs
0 c1Co 0 c3 0 €1C5C3

_ (% b\ (a3 bs
BC= (O c2> ( 0 c3)
ABC) = (B by (283 axbs3 +byc3) _ (@axa3  aqaybs + aybycs + bycycs
0 ¢ 0 CrC3 0 C1C5C3

dyds  Aybs + bycs
0 CrC3

Therefore, G is associative.

identity: By part (b) we see that G has inverses and therefore we have that A=1A = I.

1 /c —=b\(a b 10
14 _ _
4 A_ac(O a)(O c)_(O 1)

Therefore, G is a subgroup of GL, (R). O

As an example,

(d) Prove that the set of elements of G whose two diagonal entries are equal (i.e., a = ¢) is also a subgroup
of GL,(R).

Proof. Since G is closed under multiplication and inverses by parts (a) and (b) we now need to show
that it is associative and contains the identity element.

associative: from part (c) if we set ¢; — ay,¢, — a,,c3 — a3 then A(BC) = (AB)C.
identity: from part (c) if we set ¢ — a, we still see that A™1A = I.

Therefore, the set of elements of G whose two diagonal entries are equal (i.e., 2 = ¢) is also a subgroup
of GL,(R). O

The next exercise introduces the Heisenberg group over the field F and develops some of its basic properties.
When F = R this group plays an important role in quantum mechanics and signal theory by giving a
group theoretic interpretation (due to H. Weyl) of Heisenberg’s Uncertainty Principle. Note also that the
Heisenberg group may be defined more generally — for example, with entries in Z.

1 a b 1 a b
11. Let H(F) = {(0 1 c) la,b,ce F} — called the Heisenberg group over F. Let X = (0 1 c) and
0 0 1 0 0 1

1 d e
Y = (0 1 f) be elements of H(F).
0 0 1

(a) Compute the matrix product XY and deduce that H(F) is closed under matrix multiplication. Exhibit
explicit matrices such that XY # YX (so that H(F) is always non-abelian).



Proof.

0 0 1)\0 0 1 0 0 1
This shows us that H(F) is closed under matrix multiplication. However, had we had the matrices in
reverse order we would have had the product dc as part of the sum for the top right entry of the matrix
instead of the product af as we see here. Therefore, as an example, any matrix with af # dc will not

1 a b\/1 d e 1 d+a e+af+b
XY:(O 1 cj(o 1 fj:(o 1 c+f )

commute.
1 5 6 1 3 7
LetA = (0 1 2) and B = (O 1 4). Then,
0 01 0 01
1 5 6\/1 3 7 1 8 33
AB=|0 1 2|0 1 4|=(0 1 6
0 0 1)\0 0 1 0 0 1
1 3 7\/1 5 6 1 8 19
BA:(O 1 4)(0 1 2):(0 1 6)
0 0 1/\0 0 1 0 0 1
O
(b) Find an explicit formula for the matrix inverse X! and deduce that H (F) is closed under inverses.
1 a b 1 —a ac-b
Proof. Let X = (O 1 ¢|. ThenX'=|0 1 —c ),and
0 0 1 0 0 1
1 a b\N/1 —a ac—-b 1 00
XXl = (O 1 c) (0 1 —C ) = (0 1 O)
0 0 1/\0 O 1 0 0 1
Therefore, H (F) is closed under inverses. O

(c) Prove the associative law for H(F) and deduce that H(F) is a group of order |F 1. (Do not assume that
matrix multiplication is associative).

1 a b 1 d e 1 ¢ h
Proof. Let X = (0 1 c) and Y = (0 1 f) and Z = (O 1 i). Then,
0 01 0 01 0 01

1 a b\/1 d e 1 d+a e+af+b
XYy=|0 1 c)(o 1 f):(o 1 c+f )
0 0 1/\0 0 1 0 0 1
1 d e\/1 g h 1 g+d h+di+e
YZ=|0 1 f)(o 1 i):(o 1 f+i )
0 0 1/\0 0 1 0 o0 1
1 d+a e+af+b\/1 g h 1 g+d+a h+di+ai+e+af +0b
XVZ=1{0 1 c+f )(0 1 i):(o 1 itc+f )
0 0 1 0 01 0 0 1
1 a b\(1 g+d h+di+e 1 g+d+a h+di+ai+e+af +b
X(YZ)y=|0 1 c)(o 1 f+i ):(0 1 i+tc+f )
0 0 1/\0 0 1 0 0 1



Since only the 3 positions in the top triangle of the matrix change (4, b, ¢ in the definition), we see that
the order of the group is |F | since there are |F| choices for each. O

(d) Find the order of each element of the finite group H(Z/2Z). The elements of the finite group H(Z/2Z)
are

1 00 1 10 1 11 1 11 1 01 1 01 110 1 00
[(0 1 0),(0 1 0),(0 1 0),(0 1 1),(0 1 1),(0 1 0),(0 1 1),(0 1 1)
0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01

and their orders are

1 00
01 0)l=1
0 01
1 10
01 0)l=2
0 01
1 11
01 0)l=2
0 01
1 11
01 1)|=4
0 01
1 01
01 1)=2
0 01
1 01
01 0)l=2
0 01
1 10
01 1)|=4
0 01
1 00
01 1)=2
0 01

(e) Prove that every non-identity element of the group H(R) has infinite order.

1 a b\N/1 a b 1 2a 2b+ac
01 ¢ 0 1 C) =0 1 2c
0 0 1)\0 0 1 0 0 1

As we can see, the order will be infinite as the three entries in the top right corner will grow without
bound when a,b,c € R.

Proof.

Therefore, every non-identity element of the group H(R) has infinite order. O

1.5 THE QUATERNION GROUP



1. Compute the order of each of the elements in Qg.
QS = {1/ _]-/ i/ _i/j/ _j/k/ _k}
Sincei-i=—1and (—-1)(—1) = 1 we see that:

2. Write out the group tables for S;, Dg and Qs.

% 1 (12)  (23) (13) (123) (12) 1
1 1 (12)  (23) (13) (123) (132)
12) (12 1 (123) (132) (23) (@13)
S;=| (23) (23 (132 1 (123 13) (12
(13)  (13) (123) (132) 1 (12)  (23)
(123) (123) (13) (12) (23) (@132 1
[(132) (132) (23) (13) (12) 1 (123)]

T+ 1 r 2 98 srosr? sr3)
1 1 r 2 P s sr sr2 s
ror 1 P 1 sr s? s s
2 2 B 1 sr s s s s
Dg=|r 1 r 12 s s sr sr?
s s st s s 1 r 2 P
sr sr st s s r 2 o 1
sr2 sr2 s s st 2 P 1 v
st sr* s sr osr2 ¥ 1 v %]
« 1 -1 i —i j - k -k
1 1 -1 i —-i j = k -k
-1 -1 1 —-i i - j -k k
i i —-i -1 1 k -k — j
Qg=|—-i —i i 1 -1 -k k j —j
i j - -k k -1 1 i —i
-i - i k -k 1 -1 —i i
k k -k j - —-i i -1 1
-k -k k —j j i —-i 1 -1

3. Find a set of generators and relations for Qg.
We can generate all of Qg with —1,i,j,k and the relations are (—1)(=1) = 1,i% = j2 = k? = ijjk = 1.
Therefore a group presentation for Qg is (—1,i,j,k | (=1)2 = 1,i? = j? = k? = ijk = —1).

Note: This is only one of several presentations for Qg.

1.6 HOMOMORPHISMS AND ISOMORPHISMS
Let G and H be groups.
1. Let ¢ : G » H be a homomorphism.

(a) Prove that ¢(x") = p(x)" foralln € Z*.



Proof. Since ¢ is a homomorphism we have that ¢(x - x) = p(x)@(x).
base case: ¢(x) = ¢(x).

induction hypothesis: Suppose ¢(x"~1) = p(x)"~1.

induction step: Given ¢ (x") we have that,

P(x") = @(xx"1)

= p(x)px"1) [p(x-x) = p(X)@(x)]
= p(X)p(0)" ! [induction hypothesis]
= @(x)1+-D [base case]
= @(x)"
Therefore, p(x") = p(x)" foralln € Z*. O

(b) Do part (a) for n = —1 and deduce that ¢(x") = ¢(x)" foralln € Z.

Proof. For part (a) we proved it for positive n. The case n = 0 is taken care of by the property of a
homomorphism that ¢(1) = 1 [i.e., anything raised to the power of zero is 1].

Let 15 and 14 be the identity elements for the groups G and H, respectively. Then,

px) = px-1g)
px) = px)p(1lg)
P()Lp(x) = () L) p(15)
P(x)p(x) = p(1g)
P(x)tp(x) = pxx1)
P(x)Lp(x) = p()p(x71)
P)p(x71) = p(x)p(x)~!
P p)p(x™) = p(0) () p(x) 7!
p(x ) =)

base case: p(x~!) = p(x)71.
induction hypothesis: Suppose ¢(x~"~D) = p(x)~"-1.
induction step: Given ¢(x™") = ¢(x)~" we have that,

p(x") = px~lam D)

= (D= "1) [p(x-x) = p(x)p(x)]
= p(x DHpx)~"b [induction hypothesis]
= @(x)"170"D = ()" [base case]
Therefore, coupled with the proof from part (a) we see that ¢(x") = ¢(x)" for alln € Z. O

2. If ¢ : G —» H is an isomorphism, prove that |p(x)| = x| for all x € G. Deduce that any two isomorphic
groups have the same number of elements of order n for each n € Z*. Is the result true if ¢ is only assumed
to be a homomorphism?

Proof. We know that ¢(x") = @(x)" and also that ¢(15) = 1y [Exercise 1].



Therefore, x = 1 = |x| = k while (1) = ¢(x*) = p(x)¥ =1; = |p(x)| = k. Since x, and therefore

@(x), was arbitrary, this shows that |x| = |¢(x)| for allx € G —» ¢@(x) € H. Thus, since two isomorphic
groups have the same number of elements, they will also have the same number of elements of order » for
eachn € Z*.

If ¢ is only assumed to be a homomorphism then it may not be an injective homomorphism which means
that the number of elements with the same orders may not match, so no, the result may not still be true. [

3. If ¢ : G — H is an isomorphism, prove that G is abelian if and only if H is abelian. If ¢ : G - Hisa
homomorphism, what additional conditions on ¢ (if any) are sufficient to ensure that if G is abelian, then
so is H?

Proof. 1f G is abelian then for x,y € G:

xy = yx
p(xy) = @(yx)
eX)eY) = ) e(x)

Therefore, H is abelian.

Conversely, if H is abelian then for ¢(x), p(y) € H:

PX)PY) = )@ (x)
p(xy) = @(yx)

Xy =yx [since ¢ is an isomorphism and thus an injection (1-1)]

Therefore, G is abelian.
If ¢ is a homomorphism and G is abelian then we do not need any additional conditions on ¢ as the first
part of the proof shows above. O

4. Prove that the multiplicative groups R — {0} and C — {0} are not isomorphic.

Proof. Assume there is an isomorphism ¢ : C — {0} - R — {0}. Then, since p(1) =1 = 1 = ¢(1) =
p((=1)(=1)) = @(=1)2. Therefore, p(—1) = +1 but since ¢ is injective and ¢ (1) = 1, we must then have
that ¢(—1) = —-1.

Thus, we now have
-1 =p(=1) = ¢@i?) = ¢(i)?

Since ¢(i) € R — {0}, ¢(i)? must be a positive number. Thus, we have reached a contradiction. Therefore,
the multiplicative groups R — {0} and C — {0} are not isomorphic. O

5. Prove that the additive groups R and Q are not isomorphic.

Proof. Assume there is an isomorphism ¢ : R — Q. Since these are additive groups we have that

p2) =@l +1)
=) +¢1)



We know that for a homomorphism that we have 1 = ¢(1) so therefore ¢(2) =1+ 1 = 2. We know that a
homomorphism has the property ¢(x") = ¢(x)" [Exercise 1], so that

2
2=912) = p(V2V2) = (V2 ) = p(1/2)?

However, ¢( \/E) € Q so there exist integers m, n with no common factors such that % = ¢( \/E). Therefore,

2

(%) = p(V2)2 =2 = m? = 2%

This shows us that m2 must be even, which means that m is even so that we can write m = 2t for integer t.
This leads to

(22 = 2n?
42 = 2p?
212 = n?

which shows that 72 is even and therefore 7 is even as well.

However, this is a contradiction as we assumed that m, n had no common factors. Therefore, the additive
groups R and Q are not isomorphic. O

6. Prove that the additive groups Z and Q are not isomorphic.
Proof. Assume there is an isomorphism ¢ : Q — Z. Since these are additive groups we have that
D= 1 N 1y /1 N 1
We know that for a homomorphism that we have 1 = ¢(1) so therefore
1= 1 N 1
~\2)77\2

Since ¢( %) € Z this must be an integer but there isn’t an integer that when summed with itself that equals
1. Thus, we have reached a contradiction.

Therefore, the additive groups Z and Q are not isomorphic. O
7. Prove that Dg and Qg are not isomorphic.

Proof. For an isomorphism ¢ : G — H we know that for all x € G, |x| = |¢(x)|. However, Dg has 5 elements
that have order 2 [Exercise 1 of Section 2] while Qg only has 1 element with order 2 [Exercise 1 of Section
5]. Therefore, Dg and Qg are not isomorphic. O

8. Prove thatif n # m, S, and S,, are not isomorphic.

Proof. The order of S,, and S,, are |S,| = n! and |S,,| = m!. Therefore, since n # m = n! # m!. Thus, the
orders of these groups are not equal and therefore S,, and S,,, are not isomorphic. O

9. Prove that D,, and S, are not isomorphic.



Proof. For an isomorphism ¢ : G — H we know that for all x € G, x| = |@(x)|. Half of a dihedral group’s
elements have order 2 (all of the the elements that are a multiple of s have order 2 since we can use the
relations s? = 1 and rs = sr~!) and there are only 9 elements with order 2 in S, [Exercise 4 of Section 3].
Therefore, D,, and S, are not isomorphic. O

10. Fill in the details of the proof that the symmetric groups S, and S, are isomorphic if |A| = ()] as follows:
let 6 : A — Q) be a bijection. Define

@:S5 > Saby@(o) =000 offoralloinS,
and prove the following:
(a) ¢ is well-defined, that is, if o is a permutation of A then 6 o ¢ o §~! is a permutation of Q).

Proof. Since

—

VAN O]
Q- A
(AN JAN

—

Hence, p(c) = 0o 0o !l = (o) : Q) - O is a permutation of (). Therefore, ¢ is well-defined. O
(b) ¢ is a bijection from S, onto Sp,. [Find a 2-sided inverse for ¢.]

Proof. ¢~1 should be the reverse of ¢. Let T be a permutation of ().

el t)=01oTo0
(pogp‘l(r):¢(9_10T09):90(9_10’[09)09_1:1’
¢ logo) =9l (Bocof)y=0"10(fooob)ob=0

and so ¢ indeed has a (2-sided) inverse. O

(¢) @ is a homomorphism, thatis, ¢(c o T) = ¢(0) o ¢(7).

Proof.
@(coT) =0o0To0f0 1=0o008lofoTo0h !
p(ooT)=(0ocobf ) o(foTob!) =¢(0)o(T)
Therefore, ¢ is a homomorphism. O

Note the similarity to the change of basis or similarity transformations for matrices (we shall see connections
between these later in the text).

11. Let A and B be groups. Prove that A x B = B x A.

Proof. Leta € A and b € B. Let ¢ be the function that swaps a,b in (a,b) € A x B so that ¢((a,b)) = (b,a).
Therefore, ¢ is a function that maps A x B — B x A.

homomorphism: If ¢((ay,b;)(a,,b,)), then
¢((ay,by)(ay,by)) = p((aya,,b1b,))
= (biby, a105)
= (by,a1)(by,a7)
= ¢((ay,b1)) (a2, 7))



Therefore, ¢ is a homomorphism.
injective:

4’((‘11/171)) = ?((ﬂz/bz))
(b1,ﬂ1) = (bzlﬂz)

so that b; = b, and a; = a,. Therefore, ¢ is injective.
surjective:
Let (b1,a,) € B x A. Then, we know that
(a1, b1)) = (by,a7)
Therefore, ¢ is surjective.
Since we have shown that ¢ is a homomorphism that is both injective and surjective, ¢ is a bijection.

Therefore, A x B = B x A. O
12. Let A, B, and C be groups and let G = AxBand H = B x C. Prove that G x C = A x H.

Proof. Leta € A,b € B,c € Csuchthat (a,b) € Gand (b,c) e H. Let¢p: GxC - Ax H.
homomorphism:

@(((aq,b1),¢1)((ay,b,),¢7)) = @(((a1ay,b1b,),¢1¢7))
= (ayay, (byby, c105))
= (aq, (by,¢1))(ay, (by,c3))
= @(((ay,b1),¢1))p(((ay, by),c3))

Therefore, ¢ is a homomorphism.
injective:

@((ay,b1),c1) = p((ay, by),cy)
(aq, (b1151)) = (a,, (bZI )

so thata; = a, and (by,¢;) = (by,¢c,) = by = b, and ¢; = ¢,. Therefore, ¢ is injective.
surjective:
Let (aq, (b1,¢1)) € A x H. Then, we know that
@(((ay,b1),¢1)) = (ay, (by,c1))
Therefore, ¢ is surjective.
Since we have shown that ¢ is a homomorphism that is both injective and surjective, ¢ is a bijection.

Therefore, G x C = A x H. O

13. Let G and H be groups and let ¢ : G - H be a homomorphism. Prove that the image of ¢, ¢(G), is a
subgroup of H (cf. Exercise 26 of Section 1). Prove that if ¢ is injective then G = ¢(G).



Proof. To show that ¢(G) is a subgroup of H we need to show that it contains the identity element, inverses,
and its elements are associative.

identity: Since ¢ is a homomorphism we know that ¢(1;) = 1. Therefore, 1; € ¢(G).
inverses: Since (1) = p(g¢™!) = p(9)p(g~!) we know that p(¢~!) = ¢(g)~! [Exercise 1].
Therefore, we see that given g~! € G we have ¢(g)~! € H.

associative: Since ¢ is a homomorphism we know that ¢(g,9>) = ¢(g1)¢(g>). Therefore, since the binary
relation for the group G is associative we see that

81(8283) = (8182)839(81(8283)) = ¢((8182)83)9(81)9((8283)) = ¢((8182))9(£3)P(81) (¢(82) 9(83)) = (¢(81)P(82))9(&3)

Thus, ¢(G) is associative.
Therefore, ¢(G) is a subgroup of H.

Additionally, if ¢ is injective then since we already know that it is surjective (since forallh € ¢(G),3g € G
such that ¢(g) = h, which is trivially true from the definition of this homomorphism), this would make it a
bijection and therefore G = ¢(G). O

14. Let G and H be groups and let ¢ : G - H be a homomorphism. Define the kernel of ¢ tobe {g € G |
@(g) = 1y} (so the kernel is the set of elements in G which map to the identity of H, i.e., is the fiber over the
identity of H). Prove that the kernel of ¢ is a subgroup (cf. Exercise 26 of Section 1) of G. Prove that ¢ is
injective if and only if the kernel of ¢ is the identity subgroup of G.

Proof.
identity: Since ¢ is a homomorphism we already know that 1; = ¢ (1), therefore 15 €kerg.

inverses: Suppose that ¢ €kerg, g # 15. Then,

p@Q) =1y
P He®) =e@E™
P9 = 9"
p(1g) = 9™
1y =¢@E™h

Therefore, kerg contains inverses.

associative: Suppose that g1, $,, g3 Ekerg. Then

@(g1) =) =(g3) =1y
Thus,
(@(81)9(£2))9(83) = 9(81)(@(82)9(g3))
(9(8182))9(83) = ¢(81)(9(£283))

©((8182)83) = ¢(81(8283))
9((8182)83) = ¢(81(8283))

so that (£19,)93 = §1(8283)- Therefore, kerg is associative.

Since kerg contains the identity element, inverses, and is associative, it is a subgroup of G. O



Now, prove that ¢ is injective if and only if the kernel of ¢ is the identity subgroup of G.

Proof. If @ is injective, then there can only be one ¢ € G such that ¢(g) = 1. Therefore, kerg only contains
this one element g and we know that this must be equal to 15 as homomorphisms map identities to identities

(ie., p(1c) = 1p).
For the converse direction, we will prove the contrapositive.

If kerg is not the identity subgroup of G then it contains two or more elements that equal 1. Let g;,4, be
two of these elements. Then,

¢(g1) = 1y and ¢(g;) = 15@(g1) = ¢(g2)

but since g; # g, we see that we have two elements of G that map to the same element in H. Therefore, ¢ is
not injective.

Therefore, ¢ is injective if and only if the kernel of ¢ is the identity subgroup of G. O

15. Define a map 7 : R? - R by 7((x,y)) = x. Prove that 7t is a homomorphism and find the kernel of 7t
(cf. Exercise 14).

Proof. 7w((x1,y1) + (x2,¥2)) = 7T((x1 + X3, Y1 +Y2)) = X1 + X = w((X1,Y1)) + T((X2,Y2))

Since any y € R suffices 77((0,y)) = 0, where 0 is the additive identity for R we see that kerrt = {(0,y) |y €
R}. O

16. Let A and B be groups and let G be their direct product, A x B. Prove that the maps 77; : G — A and
1, : G — B defined by 7;((a,b)) = a and m,((a,b)) = b are homomorphisms and find their kernels (cf.
Exercise 14).

Proof.
7T1((111,b1)(112/b2)) = 771((1111121171172)) = a4, = 7T1(((11/b1))71'1((02/bz))
kerrry = {(1,b) | b € B}

Tt ((ay,b1) (ay,by)) = 115 ((a189,b1b7)) = byby = 715((a1,b1)) 711 ((ay, by))
kermt, = {(a,1) |a € A} O

17. Let G be any group. Prove that the map from G to itself defined by ¢ — ¢~! is a homomorphism if and
only if G is abelian.

Proof. If the map ¢ — ¢! is a homomorphism, then, letting us denote it as ¢, we see that

9(8182) = ¢(81)9(g2)
($182) 7" = 9§ P(82)
881! = 98982
P(82)9(g1) = ¢(81)P(g2)
P(8281) = ¢(8182)

so that g19» = §,91. Therefore, G is abelian.



Conversely, if G is abelian then
P(8182) = (§182)7' = 8281 = 8182 = 9(81)9(82)

Therefore, ¢ is a homomorphism. O

18. Let G be any group. Prove that the map from G to itself defined by ¢ — ¢2 is a homomorphism if and
only if G is abelian.

Proof. Let us denote the map g — g2 as ¢.

If ¢ is a homomorphism, then

©(§182) = ¢(81)P(g2) [definition of homomorphism]
P($19>) = §343 [definition of mapping]
(§182)° = §3¢3 [definition of mapping]
81828182 = 8183
Thus, G is abelian.

Conversely, if G is abelian then

9(8182) = (8182)°

= 81828182
= 31818282 [G is abelian]
= 8183
= ¢81)9(g2)
Thus, ¢ is a homomorphism.
Therefore, the map from G to itself defined by ¢ — ¢? is a homomorphism if and only if G is abelian. O

19. Let G = {z € C | z" = 1 for some n € Z™}. Prove that for any fixed integer k > 1 the map from G to itself
defined by z ~ z* is a surjective homomorphism but is not an isomorphism.

k

Proof. Let us denote the map z — z" as ¢.

For k > 1 and ¢(z) = z* we have that

P(z127) = (lez)k

= zkzk [since complex numbers are commutative]

SR
= ¢(z1)9(22)
Therefore, ¢ is a homomorphism.
surjective:
Let z; = zZF € ¢(G). Then, we know that z = 4/z1 and
9(2) = p({z1)
= (4fz)F



Therefore, ¢ is surjective.
injective:

Counterexample, let z; = i and z, = 1. Obviously i # 1 but we have that z‘f = z%. Therefore, we have
multiple elements of G that map to the same element in ¢(G). Therefore, ¢ is not injective and thus it is not
an isomorphism. O

20. Let G be a group and let Aut(G) be the set of all isomorphisms from G onto G. Prove that Aut(G) is
a group under function composition (called the automorphism group of G and the elements of Aut(G) are
called automorphisms of G).

Proof. Aut(G) = {¢ : G —» G| ¢ is an isomorphism}.
identity: the isomorphism ¢(g) = g is the identity.

inverses: by definition every isomorphism has an inverse (bijections have inverses that are themselves bi-
jections), which is also an isomorphism.

associative: function composition is associative by definition.

closure: composition of two isomorphisms is another isomorphism.

Therefore, Aut(G) is a group under function composition. O
21. Prove that for each fixed nonzero k € Q the map from Q to itself defined by g — kg is an automorphism
of Q (cf. Exercise 20).

Proof. Let ¢ : Q — Q such that ¢(q) = kq for some nonzero k € Q.

homomorphism:

P(q1 +q2) = k(g1 +q2)
= kq, +kqy

= @(q1) + ¢(q2)
Therefore, ¢ is a homomorphism.
injective:
?(q1) = ¢(q2)
kigy =Ky,
so that g; = g, since k is fixed. Therefore, ¢ is injective.
surjective:
Let t € Q and note that tk~! is also in Q.

@tk=t) = ktk=t
= tkk!
=t



Therefore, ¢ is surjective.

Since we have shown that ¢ is a homomorphism that is both injective and surjective, ¢ is a bijection on to
itself, making it an automorphism. O

22. Let A be an abelian group and fix some k € Z. Prove that the map a — a* is a homomorphism from A to
itself. If k = —1 prove that this homomorphism is an isomorphism (i.e., is an automorphism of A).

Proof. Let ¢ : A — A such that ¢(a) = a* for some fixed k € Z.
homomorphism:

Playa;) = (a1a,)"
= akal [since A is abelian]

= p(ay)p(ay)
Therefore, ¢ is a homomorphism. Since ¥ € A it is from A to itself.
If k = —1, then

injective:

p(aq) = @ay)
o' = a3

ayay" = aa;"
1= aya;?

la, = aja5'a,

Ay = a4
Therefore, ¢ is injective.
surjective:
Leta € A and note that a1 is also in A.
) =@ =a
Therefore, ¢ is surjective.
Since we have shown that ¢ is a homomorphism from A to itself that is both injective and surjective when

k = —1, it is therefore an automorphism of A. O

23. Let G be a finite group which possesses an automorphism o (cf. Exercise 20) such that o(g) = g if and
only if ¢ = 1. If 02 is the identity map from G to G, prove that G is abelian (such an automorphism is called
fixed point free of order 2). [Show that every element of G can be written in the form x~1o (x) and apply ¢ to
such an expression. |

Proof. The hints suggest showing that every element in G can be represented as x~!o (x). Therefore, we need
to prove that the map x — x~1o(x) is a bijection. If we show that this map is injective, since the group G is
finite and domain and codomain are the same, this will show that it is bijective.

871 (g1) =850 (82)
§187'0(81) = 818510 (82)



o(g1) = 8187 ' (82)
o(g1)0(g) " = 81850 (g2) 7"
o(g)o(g) ™ =8187"

7(8182") = 187"
r(g185") =1

so that ¢; = g, which shows that the map x — xlo(x)isa bijection.

Now following the second suggestion in the hints
c@lo@) =o@ghoe@) =@ g
Therefore, o maps elements to their inverses as gfla( g) and o ( g’1 )g are inverses. Now we see that,
0(8182) = 0(8182)
(©182)7 = (g1 (g2)
881! =81'83"

Therefore, G is abelian. O

24. Let G be a finite group and let x and y be distinct elements of order 2 in G that generate G. Prove that
G = D,,,, where n = |xy|. [See Exercise 6 in Section 2.]

Proof. Since G has generators x and y with x> = y? = 1 then the elements of G are x,xy, xyx, ... and
¥,yx,yxy,... and since G is finite, at some point one of these will equal the identity element, so we will
be done. The identity element cannot be an element like xyxyx, because we can multiple both sides by x (or
y when appropriate) so that

xyxyx =1
xxyxyxx =xx =1
yxy =1
yyxyy =yy =1
x=1

where the same logic can be applied for yxyxy as well. Therefore, the identity element will be of the form
(xy)™.
Therefore, the presentation for G is
ylx>=y*=(@y" =1
Additionally, since x? = 1,y> =1 = x = x~ !,y = y~! we see that if we let r = xy then
rx = (xy)x

= x(yx)

=x(y'x7h)

= x(xy)~!
= xr7!

The presentation of G can now be shown to be isomorphic to D,,, by letting r = xy and s = x. We showed
that D,,, can also be generated by s and sr [Exercise 3 of Section 2] which maps to x and xxy, respectively.
But xxy = y since x> = 1. Thus, we can denote the presentation for G as

(5,512 = (sr)2= )" =1,rs=sr1)

Therefore, G = D,,,, where n = |xy|. O



25. Letn € Z*, let r and s be the usual generators of D,,, and let § = 27t /n.

(a)

(b)

cosf) —sinf
sinf  cosd
plane about the origin in a counterclockwise direction by 6 radians.

Prove that the matrix ( ) is the matrix of the linear transformation which rotates the x, y

Proof. A point in the x, y plane can be represented by a column vector (;)

We can see that this transformation does not move the origin
cosfd —sinf) (0} (0
sinf cos® J\0)  \0
and that it moves the x-axis (unit vector pointing in the x direction) to
cosf —sinf) (1) (cosd
sinf cos@ /\0/) \sind
and that it moves the y-axis (unit vector pointing in the y direction) to
cosf) —sinf) (0} _(—sind
sinf cos® J\1)  \ cosf
and finally, for any general point (x,y) to
cosf) —sinf) (x\ (xcosf —ysinf
sinf cos® J\y) \xsinf+ycos6
cosf —sinf

sinf)  cosd
x,y plane about the origin in a counterclockwise direction by 6 radians. O

This shows that the matrix ( ) is the matrix of the linear transformation which rotates the

Prove that the map ¢ : D,,, — GL,(R) defined on generators by

cosf —sinf 0 1
P = (sin@ cos 6 ) and ¢(s) = (1 O)
extends to a homomorphism of D,,, into GL, (R).

Proof. For ¢ to be a homomorphism we need ¢(rr) = ¢(r)@(r) and @(ss) = ¢(s)@(s).

cosf —sind 2_ cosf —sinf) (cosf —sinf
sinf cos@ “\sinf® cos® sinf cos#@

p(rr) = p(r?) = ( ) = @) p(r)
Additionally, ¢(r?) € GL,(R) because

(r2) = cosf —sinf) (cosf —sinf) (cos?f—sin’f —2cosBsinb
¢ ~ \sinf cos#@ sin@ cosf )T\ 2cosfsinf  cos?6 —sin® 6

and det(¢(r?)) = cos* 6 + 2 cos? Osin” 0 + sin* 6 # 0

2
0 1 0 1\/0 1
@(ss) = p(s?) = (1 0) = (1 0) (1 0) = @(s)p(s)

Additionally, ga(sz) € GL,(R) because (p(sz) = ¢(1) = 1 as we can see here

0 1\/0 1) (1 0
¢(52):(1 o><1 0>:<0 1)21

Therefore, ¢ : D,,, - GL,(R) extends to a homomorphism of D,,, into GL,(R). O



(c) Prove that the homomorphism ¢ in part (b) is injective.

Proof.

(1) = o) cosf —sinf)  (cos® —sinf .=
P =902 Ging  cos . \sin@ cosé 21_2

as the rotation of 6 radians is the same for both matrices so they represent the same rotation.

01 01

Therefore, ¢ is injective. O

26. Let i and j be the generators of Qg described in Section 5. Prove that the map ¢ from Qg to GL,(C)
defined on generators by
. V-1
@) = (

0 (0 -1
0 —J—_l)andgo(])z(l 0)

extends to a homomorphism. Prove that ¢ is injective.

Proof.
homomorphism:
2
y . V-1 0 ) (\/—1 0 )(\/—1 0 ) N
= 2 = = =
(ii) = @(i9) ( 0 _‘/_—1 0 _‘/_—1 0 _\/_—1 e)e)
2
y . 0 -1 0 -1\(0 -1 N
(P<JJ>=(P(J2>=<1 0) =<1 0)(1 0)=(P(J>¢<J>
injective:

¢(iy) = ¢(ir) (

V) (5 )

as the matrices are constants, this trivially shows there is only one i.

The same argument sulffices for ¢(j). O

1.7 GROUP ACTIONS

1. Let F be a field. Show that the multiplicative group of nonzero elements of F (denoted by F*) acts on
the set F by g - a = ga, where ¢ € F*,a € F and gua is the usual product in F of the two field elements (state
clearly which axioms in the definition of a field are used).

Proof. Letf,,f, € F* and a € F, then

fi-(h-a)=(ifo)-a [field elements are associative]
l-a=a,forallaeF [1is the multiplicative identity of F*]
This shows that the multiplicative group F* acts on F. O

2. Show that the additive group Z acts onitself by z-a =z +aforall z,a € Z.



Proof. Letzq,z,,a € Z, then

Z1+(2y-a) =21+ (2o +a) = (z; +2,) +a [addition is commutative in Z]
0-a=0+a=aforallae Z [0 is the identity element of the additive group Z]
This shows that the additive group Z acts on itself. O

3. Show that the additive group R acts on the x,y plane R x R by r - (x,y) = (x + ry, y).

Proof. Letr,r, € Rand (x,y) € R x R, then

ry (- (Gy) =1 (x +1y,Y)
= ((x+ 1Y) + 1y, Y)
=+ (ry +rDy,y)
=(rp-1r) - (x,y)

where - in (7 - 1) is the group operation of the additive group R.
0-(,y) = (x+0y,y) = (xy)
This shows that the additive group R acts on the x, y plane R x R. O

4. Let G be a group acting on a set A and fix some a4 € A. Show that the following sets are subgroups of G
(cf. Exercise 26 of Section 1):

(a) the kernel of the action.
Proof. The kernel of the action is the group {g € G| g-a =aforalla € A}.
Let g1, 8> in the kernel of the action and a € A, then

identity: Since G is a group that acts on A we know that 1-a = a by definition. Therefore, by definition,
the kernel of the action always contains the identity element.

associative: Since G is a group that acts on A we know that g; - (g, - 4) = (18>) - a by definition. Since
g1, 8> are in the kernel of the action this becomes g; - (3, -4) = g - (a) = a so that the kernel of the action
is associative.

inverses: Sincel-a =a

l-a=("'g)-a
=g (g
:g—l.g
=a

Thus, the kernel of the action contains inverses.
Therefore, the kernel of the action is a subgroup of G. O
(b) {g € G|ga = a} — this subgroup is called the stabilizer of a in G.

Proof. We can use the same proof as part (a) above. That proof used an arbitrary a to account for all
a € A, whereas for the stabilizer of a in G we would use a specific a. The proofs are therefore the same. [J



5. Prove that the kernel of an action of the group G on the set A is the same as the kernel of the corresponding
permutation representation G — S, (cf. Exercise 14 in Section 6).

Proof. The identity element of 54 is the permutation that does nothing to the elements of A and leaves them
all fixed. The kernel of G — S, is all of the elements of G that map to the identity of element of S, which is
the permutation that does nothing and keep the elements of A fixed (i.e., it is the fiber over the identity of
A). This is exactly what the kernel of an action of the group G on the set A is, by definition. Therefore, they
must be equal. O

6. Prove that a group G acts faithfully on a set A if and only if the kernel of the action is the set consisting
only of the identity.

Proof. If a group G acts faithfully on a set A then we know it is an action in which the associated permutation
representation is injective. Therefore, the kernel of the corresponding permutation representation G — S,4
only contains the identity element [Exercise 14 of Section 6] and therefore the kernel of the action only
contains the identity element [Exercise 5].

Conversely, if the kernel of the action only contains the identity element then so too does the kernel of the
corresponding permutation representation G — S, [Exercise 5]. Since the kernel of the corresponding
permutation only contains the identity element it is injective [Exercise 14 of Section 6] and therefore the
group G acts faithfully on the set A. O

7. Prove that in Example 2 in this section the action is faithful.

Proof. In Example 2 we have V = R” and F = R where the group action is specified by
a(ry, 1o, ..., 1,) = (@r),ary, ..., &r,)
foralla € R, (rq,7,,...,1,) € R", where ar, is just multiplication of two real numbers.

The kernel of the associated permutation representation R — R” is the elements of R that map to the
identity permutation. The identity permutation is the permutation that does nothing to the elements of R"
and leaves them fixed.

The only element in R that has this capability is the multiplicative identity of R*, i.e. 1. Since this is the only
element in the kernel of the associated permutation representation we know that the kernel of the group
action only contains the identity element as these two groups are equal [Exercise 5] and therefore the action
is faithful [Exercise 6]. O

8. Let A be a nonempty set and let k be a positive integer with k < |A|. The symmetric group S, acts on the
set B consisting of all subsets of A of cardinality k by o - {ay, ..., a;} = {0 (ay),...,0(a;)}.
(a) Prove that this is a group action.
Proof. Letoy,0, € S5 and {ay, ..., a4} € B.
Since symmetric groups are groups under function composition we see that

oq - (0—2 . {al,...,ak}) = 010 (02 o {al,...,ﬂk})
010 (0 0{ay,...,a;}) = (01 005) o{ay, ..., a;} [function composition is associative]

Let 1 be the identity permutation of S 4, then

1 N {al,...,ﬂk} = {1(ﬂ1),...,1(ak)} = {al,...,ﬂk}



Therefore, this is a group action.

O

(b) Describe explicitly how the elements (1 2) and (12 3) act on the six 2-element subsets of {1, 2, 3,4}. The
six 2-element subsets of {1,2,3,4} are {1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}.

12)({1,2}) ={0q2)(1), 04 22)} ={2,1}
(12)({1,3}) ={0q 2y(1), 04 2)(3)} =1{2,3}
(12)({1,4}) = {01 2(1), 01 o)D)} = {2,4}
(12)({2,3}) = {01 2(2),04 23)} ={1,3}
(12)({2,4}) = {01 2)(2), 04 2D} ={1,4}
(12)({3,4}) ={012)(3),01 2D} = {3,4}

(123)({1,2}) = {ca 23)(1)1‘7(1 2 3) (2)} =1{2,3}
(123)({1,3}) ={0q 23 (1),01233)}={21}
(123)({1,4}) ={0q25(1), 00123 H} ={2,4}
(123)({2,3}) ={0123)(2), 0123 3)} ={3,1}
(123)({2,4}) = {0123 (2),0023 @)} = {3,4}
(123)({3,4}) ={0125(3), 0123 H} ={1,4}

9. Do both parts of the preceding exercise with “ordered k-tuples” in place of “k-element subsets”, where
the action k-tuples is defined as above but with set braces replaced by parentheses (note that, for example,
the 2-tuples (1,2) and (2, 1) are different even though the sets {1,2} and {2, 1} are the same, so the sets being

acted upon are different).

(a) Prove that this is a group action.

Proof. Letoy,0, € Sy and (ay, ...,a;) € B.

Since symmetric groups are groups under function composition we see that

01+ (0p - (a1, ...,8,)) = 010 (050 (ay,...,0))

010 (00 (ayq,...,a;,)) = (07 00,) 0 (ay,...,0) [function composition is associative]

Let 1 be the identity permutation of S 4, then

1-(ay,...,a) = (L(ay), ..., Way)) = (aq,...,a;)

Therefore, this is a group action.

O

(b) Describe explicitly how the elements (1 2) and (1 2 3) act on the twelve 2-element subsets of (1,2, 3, 4).
The twelve 2-element subsets of (1,2,3,4) are:

(1,2),(2,1),(1,3),3,1),(1,4),4,1),(2,3),3,2),2,4),42),3,4), 43).

(12)((1,2)) = (04 2)(1),04 2(2)) = (2,1)
(12)(2,1) = (01 2(2),002 @) =(1,2)
(12)((1,3)) = (01 (1), 01 2(3)) = (2,3)
(12)((3,1)) = (03 2)(3), 01 2)(1)) = (3,2)
A2)((L,4D) = (04 2(1), 04 2(D) = (2,4)
12)((4, 1) =(0apn@),0021) =(42)
(12)((2,3)) = (04 2y(2),04 2(3)) = (1,3)



(12)((3,2)) = (01 2(3),012(2)) =31

(12)(2,4) = (01 2(2),002@) = (1,4

(12)((4,2)) = (0 2y4), 01 2(2)) = (4,1)

12)((3,4) = (04 2(3),042(d) = (3,4)

(12)((4,3)) = (01 2(4),0123)) = (4,3)
(123)((1,2)) = (0123)(1),0123(2)) =(2,3)
(123)((2,1)) = (04 23(2),04023(1) =3,2)
(123)((1,3)) = (04 23/(1),0123/3)) =(2,1)
(123)((3,1)) =(0(123(3), 01253 @D) =(1,2)
(123)((1,4)) = (‘7(123)(1)/‘7(123)(4)) =(2,4)
(123)((4,1) =(0q23#), 0023 1) =(42)
(123)((2,3)) = (0(123)(2),01233)) =3, 1)
(123)((3,2)) = (0(123)(3),0123(2)) = (1,3)
(123)((2,4)) = (0'(123)(2)10(123>(4)) =(3,4)
(123)((4,2)) = (01 23(4), 01 23/(2)) = (4,3)
(123)((3,4)) = (0(123)(3), 01253 #) = (1,4)
(123)((4,3)) = (0123(4),012303)) = (41)

10. With reference to the preceding two exercises determine:

(a)

for which values of k the action of S,, on k-element subsets is faithful, and If k = n, then the only subset
is the set itself. All permutations of this set, S,,, leave the set fixed. Therefore, the kernel of the action
is 5,,, which is obviously not faithful.

If k = 1, then the subsets are the singletons of n. The only permutation that can keep these subsets all
fixed is the identity permutation of S,,. Therefore, this value of k is faithful.

If k > 1 and k # n, then the there will be subsets that share the same elements among themselves
which means there will not be a single permutation that can fix all the subsets, except for the identity
permutation of S,,. Therefore, this value of k is faithful.

Thus, for k < n the action of S,, on k-element subsets is faithful.

for which values of k the action of S,, on ordered k-tuples is faithful. If k = n, we would have n ordered
n-tuples. As theses tuples are all distinct, any permutation other than the identity permutation would
change them, which means they would not be fixed. Therefore, this value of k is faithful.

If k = 1, then the ordered tuples are the singletons of n. The only permutation that can keep these
tuples all fixed is the identity permutation of S,,. Therefore, this value of k is faithful.

If k > 1 and k # n, then the there will be tuples that share the same elements among themselves
which means there will not be a single permutation that can fix all these tuples, except for the identity
permutation of S,,. Therefore, this value of k is faithful.

Thus, for k < n the action of S,, on k-element subsets is faithful.

11. Write out the cycle decomposition of the eight permutations in S, corresponding to the elements of Dg
given by the action of Dg on the vertices of a square (where the vertices of the square are labeled as in Section

2).



In Section 2 the text states (there is also a figure of the labeled square that makes up Dg)

Fix a regular n-gon centered at the origin in an x, y plane and label the vertices consecutively from 1 to n in
a clockwise manner. Let r be the rotation clockwise about the origin through 27t/n radian. Let s be the
reflection about the line of symmetry through vertex 1 and the origin.

The elements of Dg are {1,7,7%,13,s,sr,sr%,sr°} and the corresponding permutations in S are:

{1, (1234), (13)(24), (1432), (24), (14)(23), (13), (12)(34)}

12. Assume 7 is an even positive integer and show that D,,, acts on the set consisting of pairs of opposite
vertices of a regular n-gon. Find the kernel of this action (label vertices as usual).

Proof. Letnbe even and let the n-gon be labeled clockwise as 0, 2, ..., #—1 and let us denote the set of ordered
pairs as:

@) = (Gi+5)10<i< D)

a} ={3,i+ = <i< -

! 2 2

Since D,,, is generated from r and s, where r a clockwise rotation (n rotations) and s is a reflection about

an axis through two vertices (1/2 axes of reflection) we see that we can represent the action of D,,, on the
elements of {a;} as:

r*a; = a;_) (mod n)
ska; = a;_gn )2y (mod 1)
Now we will show that these meet the properties of a group action:

Let ¢1,9> € D,, such that ¢; = s*r" and g, = 574

91 (g -a) = st (s ay)
b
ST A((i—d)—cny2)
A((((i-d)—cn/2)—b)—an/2)
b
(8*r7s°r¢) - a;
(8182) - 4;

I

M-a;=a;_, (modn) = 1-a; =a; (mod n)

52

“; = A;_py (mod n) = 1-a; =a; (mod n)
Therefore, 1 - a; = a; for all a; € {a;}. Thus, we have shown this a group action.

The kernel of this actionis " =s> =1 = {1}. O
13. Find the kernel of the left regular action.

Proof. The left regular action is when the group G acts on itself with the map g : a — gaforalla € G.

Therefore, the kernel of the left regular action is the identity element of G as all other elements of G will not
have this property foralla € G. O

14. Let G be a group and let A = G. Show that if G is non-abelian then the maps defined by g - a = ag for all
g,a € G do not satisfy the axioms of a (left) group action of G on itself.



Proof. The first property of a group action (left) would give:

81 (82-4) = g1 - (a82) = (48281)
but
(8182) - a = (48182)-
However, since G is non-abelian we see that
(a8281) # (48182) = 81 (82 a) # (8182) - 4.

Therefore, these maps do not satisfy the axioms of a (left) group action of G on itself. O

15. Let G be a group and let A = G. Show that the maps defined by ¢ -a = ag~! for all g,a € G do satisfy the
axioms of a (left) group action of G on itself.

Proof.
81 (827 a) =g - (ag3")
= (ag3'g1")
= (a(3182)7")
= (8182) -4
Thus,g=1 = l-a=al"t=a.
Therefore, these maps do satisfy the axioms of a (left) group action of G on itself. O

16. Let G be any group and let A = G. Show that the maps defined by ¢ -a = gag~! for all g,a € G do satisfy
the axioms of a (left) group action (this action of G on itself is called conjugation).

Proof.
81 (82°a) =81 (8208, ")
= 81(82087 )87 "
= (£182)2(8182) 7"
= (8182) -4
Thus,g=1 = 1l-a=1lal"! =a.
Therefore, these maps do satisfy the axioms of a (left) group action of G on itself. O

17. Let G be a group and let G act on itself by left conjugation, so each ¢ € G maps G to G by
X~ gxg™!

For fixed g € G, prove that conjugation by g is an isomorphism from G onto itself (i.e., is an automorphism
of G — [Exercise 20 of Section 6]). Deduce that x and gxg~! have the same order for all x in G and that for
any subset A of G, |A| = |gAg™!| (here gAg™! = {gag~' |a € A}).

Proof. Let the map for the conjugation by g x — gxg~! be denoted by ¢. To prove this is an automorphism
we must show that it is a bijective homomorphism.

homomorphism:

plx-y) =gy)g™



=g(xly)g~!

=g(xg~'gg™!

= (gxg™1)(gyg™")

= p)e(y)
Therefore, ¢ is a homomorphism.
injective:

P(x1) = @(x2)
gr1g! = g8t
g7 grg™) = g7 (gxg™h)
087 =87

(18718 = (18718

x| =X
Therefore, ¢ is injective.
surjective:
Let z; = zF € ¢(G). Then, we know that z = 4/z; and

9(2) = p(yz1) = )k =z
Therefore, ¢ is surjective.
Letx; = gxg~! € ¢(G). Then, we know that x = g~ !x;¢ and

P =gg " ng™ =1

Therefore, ¢ is surjective.

Since, ¢ is a bijective homomorphism from G onto itself, it is an automorphism.

|x| and |gxg‘1| have the same order for all of x because |x| =

=1
gnxn — gn
gnxng*n — gﬂg*]’l — 1
(gxg~Hn =1

Thus, |gxg~!| = 1.

Additionally, for any subset A of G since we know that the map x — gxg~! is a bijection then a — gag~! is a

1-1 map and therefore the cardinality of A and gAg~! must be the same.
18. Let H be a group acting on a set A. Prove that the relation ~ on A defined by

a ~ bif and only if a = hb for some h € H

is an equivalence relation. (For each x € A the equivalence class of x under ~ is called the orbit of x under

the action of H. The orbits under the action of H partition the set A.)



Proof. To prove that ~ is an equivalence relation we need to show that that it is reflexive, symmetric, and
transitive.

Let i, h~1 be elements in H, then
reflexive: If a ~ a, then
a=ha
Therefore, ~ is reflexive.
symmetric: If a ~ b, then
a=hb = h'la=b = b~a.

Therefore, ~ is symmetric.

transitive: If 2 ~ band b ~ c then,

a=hband b = hc
so that
a=hhc) = a=Hh*c = a~c.

Therefore, ~ is an equivalence relation. O

19. Let H be a subgroup (cf. Exercise 26 of Section 1) of the finite group G and let H act on G (here A + G)
by left multiplication. Let x € G and let O be the orbit of x under the action of H. Prove that the map

H — O defined by hh — hx

is a bijection (hence all orbits have cardinality |H|). From this and the preceding exercise deduce Lagrange’s
Theorem:

if G is a finite group and H is a subgroup of G then |H| divides |G|.

Proof. Let us denote the map h — hx as ¢.
To show that it is a bijection we need to show that it is injective and surjective.
injective:
47(}11) = Go(hz)
hix = hyx

hyxx™! = hyxx~!
hl = h2

Therefore, ¢ is injective.

1

surjective: Let 0 = hx € O. Then, we know thath = ox™' and

Ix = ox

@(h) = g(ox~t) = ox~

Therefore, ¢ is surjective.

Since ¢ is a bijection, all orbits have the same cardinality as |H|. Since orbits are for all x € G and since orbits
are an equivalence relation from Exercise 18, the orbits under the action of H partition the set G. Therefore
we must have that |G| = n|H|, where n is the number of orbits that partition G. Since this is the equation for
|H| | |G| we do indeed see that |H| divides |G]|. O



20. Show that the group of rigid motions of a tetrahedron is isomorphic to a subgroup (cf. Exercise 26 of
Section 1) of S,.

Proof. The total amount of rigid motions for a tetrahedron is 12 [Exercise 9 of Section 2].

To show that these rigid motions are isomorphic to a subgroup of S, we can show there is subgroup which
consists of these rigid motions. First, for a tetrahedron there are 4 axes of rotation through the center of a
face and the opposite side vertex which give 8 permutations. Second, there are 3 axes of rotation through
the center of opposing edges which give 3 permutations. These rotations, coupled with the identity rotation
gives us 12 rigid motions. Now let’s see what rigid motions map to which permutations of S;:

The permutations about the center of a face and opposite side vertex are: (123), (132),(234),(243), (1
34),(143),(124),(142)

The permutations about the centers of opposing edges are: (14)(23), (13)(24), (12)(34)
Thus, the group of rigid motions are:
{1,(123), (132), (23 4), (243), (134), (143), (124), (142), (14)(23), (13)(24), (12)(3 4)}

Therefore, the group of rigid motions of a tetrahedron is isomorphic to a subgroup of S,. O

21. Show that the group of rigid motions of a cube is isomorphic to S,. [This group acts on the set of four
pairs of opposite vertices. |

Proof. The total amount of rigid motions for a cube is 24 [Exercise 10 of Section 2].

To show that these rigid motions are isomorphic to S, we can show that the rigid motions are all of the
permutations of S, where we will use the permutation on the 4 pairs of opposing vertices. Let us label
them (aq,by), (a5, b,), (a3, b3), (a4, b,), where all of the a; are on a single face and where all of the b; are all
on the opposite face. First, for a cube there are 3 axes of rotation through the centers of opposing faces
which give 9 rotations. Second, there are 4 axes of rotation through the opposing vertices (a;,b;) which
gives us 8 rotations. Third, there are 6 axes of rotation through the center of opposing edges which give 6
rotations. These rotations, coupled with the identity rotation gives us 24 rigid motions. Now let’s see what
rigid motions map to which permutations of S,:

Let 1 = (al,bl),z = (az,bz),3 = (ﬂ3,b3),4 = (a4,b4).

The permutations about the center of opposing faces are: (1234),(13)(24),(1432),(1243),(14)(23),
(1342),(1423),(12)(34),(1324)

The permutations about opposing vertices are: (234), (243),(134),(143),(124),(142),(132),(123)
The permutations about the centers of opposing edges are: (13), (24), (14), (23), (12), (34)

Therefore, including the identity rotation, the group of rigid motions of a cube are all of S, and thus they
are obviously isomorphic. O

22. Show that the group of rigid motions of an octahedron is isomorphic to a subgroup (cf. Exercise 26 of
Section 1) of S,. [This group acts on the set of four pairs of opposite faces.| Deduce that the groups of rigid
motions of a cube and an octahedron are isomorphic. (These groups are isomorphic because these solids
are “dual” — see Introduction to Geometry by H. Coxeter, Wiley, 1961. We shall see later that the groups of
rigid motions of the dodecahedron and icosahedron are isomorphic as well — these solids are also dual.)



Proof. Let us denote the 4 opposite pairs of faces of the octahedron as (a,b,), (4, b,), (a3,b3), (a4, by).

To show that these rigid motions are isomorphic to a subgroup of S, we can show there is subgroup which
consists of these rigid motions. We will use the permutation on the 4 pairs of opposing faces. Let us label
them (ay, b,), (a5, b,), (a3,b3), (a4,b,), where all of the a; are on a single pyramid and where all of the b; are
all on the opposite pyramid. First, for an octahedron there are 3 axes of rotation through the centers of
opposing vertices which give 9 rotations. Second, there are 4 axes of rotation through the opposing faces
(a;,b;) which gives us 8 rotations. Third, there are 6 axes of rotation through the center of opposing edges
which give 6 rotations. These rotations, coupled with the identity rotation gives us 24 rigid motions. Now
let’s see what rigid motions map to which permutations of S:

Let 1 = (al,bl),z = (a2,b2),3 = (ﬂ3,b3),4 = (ﬂ4,b4).

The permutations about the center of opposing vertices are: (1234), (13)(24),(1432),(1243),(14)(2
3),(1342),(1423),(12)(34),(1324)

The permutations about opposing faces are: (234),(243),(134),(143),(124),(142),(132),(123)
The permutations about the centers of opposing edges are: (13), (24), (14), (23), (12), (34)

Therefore, including the identity rotation, the group of rigid motions of an octahedron are all of S, and
thus they are obviously isomorphic. Since the group of rigid motions of a cube is also isomorphic to S,, we
therefore have that the group of rigid motions of a cube and octahedron are isomorphic. O

23. Explain why the action of the group of rigid motions of a cube on the set of three pairs of opposite faces
is not faithful. Find the kernel of this action.

Proof. The group of rigid motions of a cube on the set of three pairs of opposite faces is not faithful because
there are multiple rotations that map to the identity element. For example, the rotations about the axes
through the center of the faces all have order 2. Let us denote these rotations about the three different axes
as rq,t,, 3. Thatis,

11l = 1rpl = Ir3] = 2

Therefore, the kernel of this action is {1,77,73,73}. O



