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Chapter 1 - Introduction to Groups

Exercises:

1.1 BASIC AXIOMS AND EXAMPLES

Let 𝐺 be a group.

1. Determine which of the following binary operations are associative:

(a) the operation ∗ on ℤ defined by 𝑎 ∗ 𝑏 = 𝑎 − 𝑏

𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 − (𝑏 − 𝑐) = (𝑎 − 𝑏) − 𝑐 = (𝑎 ∗ 𝑏) ∗ 𝑐 ⟹ associative

(b) the operation ∗ on ℝ defined by 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 𝑎𝑏

𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 + (𝑏 + 𝑐 + 𝑏𝑐) + 𝑎(𝑏 + 𝑐 + 𝑏𝑐) = (𝑎 + 𝑏 + 𝑎𝑏) + 𝑐 + (𝑎 + 𝑏 + 𝑎𝑏)𝑐 = (𝑎 ∗ 𝑏) ∗ 𝑐 ⟹ associative

(c) the operation ∗ on ℚ defined by 𝑎 ∗ 𝑏 = 𝑎 + 𝑏
5

𝑎 ∗ (𝑏 ∗ 𝑐) ⟹ 5𝑎 + 𝑏 + 𝑐
25 while (𝑎 ∗ 𝑏) ∗ 𝑐 ⟹ 𝑎 + 𝑏 + 5𝑐

25 ⟹ not associative

(d) the operation ∗ on ℤ × ℤ defined by (𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑)

(𝑎, 𝑏) ∗ ((𝑐, 𝑑) ∗ (𝑒, 𝑓 )) = (𝑎, 𝑏) ∗ (𝑐𝑓 + 𝑑𝑒, 𝑑𝑓 )
= (𝑎𝑑𝑓 + 𝑏𝑐𝑓 + 𝑏𝑑𝑒, 𝑏𝑑𝑓 )
= (𝑓 (𝑎𝑑 + 𝑏𝑐) + 𝑏𝑑(𝑒), 𝑏𝑑(𝑓 ))
= (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) ∗ (𝑒, 𝑓 )
= ((𝑎, 𝑏) ∗ (𝑐, 𝑑)) ∗ (𝑒, 𝑓 ) ⟹ associative

(e) the operation ∗ on ℚ − {0} defined by 𝑎 ∗ 𝑏 = 𝑎
𝑏

𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎

(𝑏
𝑐 )

=
(𝑎

𝑏)

𝑐 = (𝑎 ∗ 𝑏) ∗ 𝑐 ⟹ associative

2. Decide which of the binary operations in the preceding exercise are commutative.

(a) 𝑎 = −5, 𝑏 = 3 ⟹ 𝑎 − 𝑏 = −5 − 3 = −8 while 𝑏 − 𝑎 = 3 − (−5) = 8 ⟹ not commutative

(b) 𝑎 + 𝑏 + 𝑎𝑏 = 𝑏 + 𝑎 + 𝑏𝑎 ⟹ commutative

(c) 𝑎 + 𝑏
5 = 𝑏 + 𝑎

5 ⟹ commutative

(d) (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) = (𝑐𝑏 + 𝑑𝑎, 𝑑𝑏) ⟹ commutative



(e) 𝑎
𝑏 ≠ 𝑏

𝑎 ⟹ not commutative

3. Prove that addition of residue classes in ℤ/𝑛ℤ is associative (you may assume it is well-defined).

Proof. Suppose we have 𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ. In order to show that these are associative under addition, we need
to show that arbitrary representatives from these residue classes are associative under addition.

Therefore, supposewe have 𝑎 ∈ 𝑎, 𝑏 ∈ 𝑏, 𝑐 ∈ 𝑐 so that 𝑎∗(𝑏∗𝑐) ⟹ 𝑎+(𝑏+𝑐) ⟹ (𝑎+𝑏)+𝑐 ⟹ (𝑎∗𝑏)∗𝑐

4. Prove that multiplication of residue classes in ℤ/𝑛ℤ is associative (you may assume it is well-defined).

Proof. Suppose we have 𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ. In order to show that these are associative under multiplication, we
need to show that arbitrary representatives from these residue classes are associative under multiplication.

Therefore, suppose we have 𝑎 ∈ 𝑎, 𝑏 ∈ 𝑏, 𝑐 ∈ 𝑐 so that 𝑎 ∗ (𝑏 ∗ 𝑐) ⟹ 𝑎(𝑏𝑐) ⟹ (𝑎𝑏)𝑐 ⟹ (𝑎 ∗ 𝑏) ∗ 𝑐

5. Prove for all 𝑛 > 1 that ℤ/𝑛ℤ is not a group under multiplication of residue classes.

Proof. The residue class 0 ∈ ℤ/𝑛ℤ does not have a multiplicative inverse 𝑎 such that 0 ∗ 𝑎 = 1. Therefore, for
all 𝑛 > 1, ℤ/𝑛ℤ is not a group under under multiplication of residue classes.

6. Determine which of the following sets are groups under addition:

(a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd.

0 is the additive identity, the rational numbers are associative from ℤ and additive inverses also exist.
It is also closed under addition since:

𝑡
2𝑛 + 1 + 𝑠

2𝑘 + 1 for integers 𝑡, 𝑛, 𝑠, 𝑘 gives us 𝑡(2𝑘 + 1) + 𝑠(2𝑛 + 1)
(2𝑛 + 1)(2𝑘 + 1) ⟹ 2(𝑡𝑘 + 𝑠𝑛) + 𝑡 + 𝑠

2(2𝑛𝑘 + 𝑛 + 𝑘 + 1) + 1

shows us that the denominator is still an odd number.

Therefore, this is a group.

(b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even.

0 is the additive identity, the rational numbers are associative from ℤ and additive inverses also exist.
It is also closed under addition since:
𝑡

2𝑛 + 𝑠
2𝑘 for integers 𝑡, 𝑛, 𝑠, 𝑘 gives us 𝑡(2𝑘 + 1) + 𝑠(2𝑛)

(2𝑛)(2𝑘) ⟹ 𝑡𝑘 + 𝑠𝑛
2𝑛𝑘 shows us that the denominator is

still an even number.

Therefore, this is a group.

(c) the set of rational numbers of absolute value < 1.

3
4 + 3

4 = 3
2 > 1

Therefore, this is not a group.



(d) the set of rational numbers of absolute value ≥ 1. The additive identity, 0, is not in the set. Therefore,
this is not a group.

(e) the set of rational numberswith denominators equal to 1 or 2. 0 is the additive identity(0
1), the rational

numbers are associative from ℤ and additive inverses also exist. The numbers with denominator 1 are
just ℤ while the numbers with denominator 2 are just ℤ divided by 2. Therefore, this is a group.

(f) the set of rational numbers with denominators equal to 1, 2 or 3.

5
2 + 1

3 = 17
6

Therefore, this is not a group.

7. Let 𝐺 = {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 < 1} and for 𝑥, 𝑦 ∈ 𝐺 let 𝑥∗𝑦 be the fractional part of 𝑥+𝑦 (i.e., 𝑥∗𝑦 = 𝑥+𝑦−[𝑥+𝑦]
where [𝑎] is the greatest integer less than or equal to 𝑎). Prove that ∗ is a well-defined binary operation on
𝐺 and that 𝐺 is an abelian group under ∗ (called the real numbers mod 1).

Proof.
well-defined: Let 𝑥, 𝑦 ∈ 𝐺. Then [𝑥 + 𝑦] is equal to either 0 or 1. If [𝑥 + 𝑦] = 0 then we know that 𝑥 + 𝑦 < 1
and 𝑥 ∗ 𝑦 = 𝑥 + 𝑦 − 0 = 𝑥 + 𝑦 < 1 so that 𝑥 + 𝑦 ∈ 𝐺. If [𝑥 + 𝑦] = 1 then we know that 1 < 𝑥 + 𝑦 < 2 and
therefore 𝑥 ∗ 𝑦 = 𝑥 + 𝑦 − 1 < 1 so that 𝑥 + 𝑦 − 1 ∈ 𝐺. Therefore ∗ is a well-defined binary operation on 𝐺.

associative: If 𝑥, 𝑦, 𝑧 ∈ 𝐺, then

𝑥 ∗ (𝑦 ∗ 𝑧) = 𝑥 + (𝑦 ∗ 𝑧) − [𝑥 + (𝑦 ∗ 𝑧)]
= 𝑥 + (𝑦 + 𝑧 − [𝑦 + 𝑧]) − [𝑥 + (𝑦 + 𝑧 − [𝑦 + 𝑧])]
= 𝑥 + 𝑦 + 𝑧 − [𝑦 + 𝑧] − [𝑥 + 𝑦 + 𝑧] + [𝑦 + 𝑧]
= 𝑥 + 𝑦 + 𝑧 − [𝑥 + 𝑦 + 𝑧]
= 𝑥 + 𝑦 + 𝑧 − [𝑥 + 𝑦] + [𝑥 + 𝑦] − [𝑥 + 𝑦 + 𝑧]
= (𝑥 + 𝑦 − [𝑥 + 𝑦]) + 𝑧 − [(𝑥 + 𝑦 − [𝑥 + 𝑦]) + 𝑧]
= (𝑥 ∗ 𝑦) + 𝑧 − [(𝑥 ∗ 𝑦) + 𝑧]
= (𝑥 ∗ 𝑦) ∗ 𝑧

identity: 0 is the identity element as 0 ∗ 𝑥 = 0 + 𝑥 − [𝑥 + 0] = 𝑥 and 𝑥 ∗ 0 = 𝑥 + 0 − [𝑥 + 0] = 𝑥.

inverses: if 𝑥 ∈ 𝐺 then (1 − 𝑥) ∈ 𝐺 and (1 − 𝑥) ∗ 𝑥 = 1 − 𝑥 + 𝑥 − [1 − 𝑥 + 𝑥] = 1 − [1] = 1 − 1 = 0 and
𝑥 ∗ (1 − 𝑥) = 𝑥 + 1 − 𝑥 − [𝑥 + 1 − 𝑥] = 1 − [1] = 1 − 1 = 0.

commutative: 𝑥 ∗ 𝑦 = 𝑥 + 𝑦 − [𝑥 + 𝑦] = 𝑦 + 𝑥 − [𝑦 + 𝑥] = 𝑦 ∗ 𝑥.

Therefore, ∗ is a well-defined binary operation on 𝐺 and (𝐺, ∗) is an abelian group.

8. Let 𝐺 = {𝑧 ∈ ℂ ∣ 𝑧𝑛 = 1 for some 𝑛 ∈ ℤ+}.

Let 𝑧1, 𝑧2 ∈ 𝐺:

(a) Prove that 𝐺 is a group under multiplication (called the group of roots of unity in ℂ).

Proof.
binary relation: 𝑧1 ∗ 𝑧2 = 𝑧𝑛

1 ⋅ 𝑧𝑘
2 = 1𝑛 ⋅ 1𝑘 = 1 for 𝑛, 𝑘 ∈ ℤ+. Thus, 𝑧1 ∗ 𝑧2 ∈ 𝐺.



identity: 1 is the identity element as 1 ∗ 𝑧1 = 1 ⋅ 𝑧𝑛
1 = 1 ⋅ 1𝑛 = 1 and 𝑧1 ∗ 1 = 𝑧𝑛

1 ⋅ 1 = 1𝑛 ⋅ 1 = 1 and 1 ∈ 𝐺.

inverses: As the elements of 𝐺 are already equal to the identity they are their own inverses.

commutative: 𝑧1 ∗ 𝑧2 = 1 ⋅ 1 = 𝑧2 ∗ 𝑧1.

The roots of unity in ℂ is an abelian group.

(b) Prove that 𝐺 is not a group under addition.

Proof. 𝑧1 + 𝑧2 = 1 + 1 = 2 ∉ 𝐺.

9. Let 𝐺 = {𝑎 + 𝑏√2 ∈ ℝ ∣ 𝑎, 𝑏 ∈ ℚ}.

Let 𝑥1, 𝑥2 ∈ 𝐺 such that 𝑥1 = 𝑎1 + 𝑏1√2 and 𝑥2 = 𝑎2 + 𝑏2√2.

(a) Prove that 𝐺 is a group under addition.

Proof.
binary relation: 𝑥1 + 𝑥2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)√2 ∈ 𝐺.

identity: 0 is the additive identity for this group as 0 + 𝑥1 = 𝑎1 + 𝑏1√2.

inverses: −𝑥1 + 𝑥1 = −𝑎1 − 𝑏1√2 + 𝑎1 + 𝑏1√2 = 0

This is a group.

(b) Prove that the nonzero elements of 𝐺 are a group under multiplication. [“Rationalize the denomina-
tors” to find multiplicative inverses].

Proof.
binary relation: 𝑥1𝑥2 = (𝑎1 + 𝑏1√2) (𝑎2 + 𝑏2√2) = 𝑎1𝑎2 + 𝑎1𝑏2√2 + 𝑎2𝑏1√2 + 𝑏1𝑏22 = (𝑎1𝑎2 + 𝑏1𝑏22) +
(𝑎1𝑏2 + 𝑎2𝑏1)√2 ∈ 𝐺.

identity: 1 is the multiplicative identity as 𝑥11 = (𝑎1 + 𝑏1√2) ⋅ 1 = 𝑥1.

inverses: As mentioned in the exercise lets rationalize the denominators.

(𝑎 + 𝑏√2) (𝑎 − 𝑏√2) = 𝑎2 − 2𝑏2

= 1
𝑎 + 𝑏√2

= 𝑎 − 𝑏√2
𝑎2 − 2𝑏2

Therefore the inverses are ( 𝑎
𝑎2 − 2𝑏2 ) + ( −𝑏

𝑎2 − 2𝑏2 ) √2.

This is a group.

10. Prove that a finite group is abelian if and only if its group table is a symmetric matrix.

Proof. This table is called a Cayley table after the British mathematician Arthur Cayley. It is easy to see that
a finite group is abelian if and only if its group table is a symmetric matrix from the fact that if the table
is symmetric along the digonal then for row 𝑥 and column 𝑦 we have that the entries for 𝑥𝑦 are equal to



the entries for 𝑦𝑥. The same argument holds for showing if all the elements of the group commute then its
group table is a symmetric matrix.

11. Find the orders of each element of the additive group ℤ/12ℤ.

|0| = 1
|1| = 12
|2| = 6
|3| = 4
|4| = 3
|5| = 12
|6| = 2
|7| = 12
|8| = 3
|9| = 4

|10| = 6
|11| = 12

12. Find the orders of the following elements of the multiplicative group (ℤ/12ℤ)× ∶ 1, −1, 5, 7, −7, 13

|1| = 1
|−1| = |11| = 2

|5| = 2
|7| = 2

|−7| = |5| = 2
|13| = |1| = 1

13. Find the orders of the following elements of the additive group ℤ/36ℤ ∶ 1, 2, 6, 9, 10, 12, −1, −10, −18.

|1| = 36
|2| = 18
|6| = 6
|9| = 4

|10| = 18
|12| = 3



|−1| = 36
|−10| = 18
|−18| = 2

14. Find the orders of the following elements of the multiplicative group (ℤ/36ℤ)× ∶ 1, −1, 5, 13, −13, 17.

|1| = 1
|−1| = |35| = 6

|5| = 6
|13| = 3

|−13| = |23| = 6
|17| = 6

15. Prove that (𝑎1𝑎2 … 𝑎𝑛)−1 = 𝑎−1
𝑛 𝑎−1

𝑛−1 … 𝑎−1
1 for all 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐺.

Proof.
base case: (𝑎 ∗ 𝑏)−1 = (𝑏−1) ∗ (𝑎−1) from Proposition 1(4).

induction hypothesis: Suppose (𝑎1𝑎2 … 𝑎𝑛−1)−1 = 𝑎−1
𝑛−1 … 𝑎−1

1 .

induction step: Let 𝑎 = (𝑎1𝑎2 … 𝑎𝑛−1) and 𝑏 = (𝑎𝑛), then

(𝑎 ∗ 𝑏)−1 = (𝑏−1) ∗ (𝑎−1) [base case]
= ((𝑎1𝑎2 … 𝑎𝑛−1)(𝑎𝑛))−1

= (𝑎−1
𝑛 )((𝑎1𝑎2 … 𝑎𝑛−1)−1)

= (𝑎−1
𝑛 )((𝑎−1

𝑛−1 … 𝑎−1
1 ) [induction hypothesis]

Therefore, (𝑎1𝑎2 … 𝑎𝑛)−1 = 𝑎−1
𝑛 𝑎−1

𝑛−1 … 𝑎−1
1 for all 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐺.

16. Let 𝑥 be an element of 𝐺. Prove that 𝑥2 = 1 if and only if |𝑥| is either 1 or 2.

Proof. If 𝑥2 = 1 then either 𝑥 = −1 or 𝑥 = 1. If 𝑥 = −1 then 𝑥2 = (−1)(−1) = 1 and | − 1| = 2. If 𝑥 = 1 then
𝑥2 = (1)(1) = 1 and |1| = 1. Therefore |𝑥| is either 1 or 2.

Conversely, if |𝑥| is either 1 or 2 then let |𝑥| = 1. An element of a group has order 1 if and only if it is the
identity thus 𝑥 = 1 [Example 1 after Proposition 2]. If |𝑥| = 2 then since in multiplicative groups ℝ − {0} or
ℚ − {0} the element −1 has order 2 and all other non-identity elements have infinite order [Example 3 after
Proposition 2].

Therefore, 𝑥2 = 1.

17. Let 𝑥 be an element of 𝐺. Prove that if |𝑥| = 𝑛 for some positive integer 𝑛 then 𝑥−1 = 𝑥𝑛−1.

Proof. If |𝑥| = 𝑛 then

1 = 𝑥𝑛



1 = 𝑥1𝑥𝑛−1

𝑥−11 = 𝑥−1𝑥1𝑥𝑛−1

𝑥−1 = 1𝑥𝑛−1

𝑥−1 = 𝑥𝑛−1

Therefore, if |𝑥| = 𝑛 for some positive integer 𝑛 then 𝑥−1 = 𝑥𝑛−1.

18. Let 𝑥 and 𝑦 be elements of 𝐺. Prove that 𝑥𝑦 = 𝑦𝑥 if and only if 𝑦−1𝑥𝑦 = 𝑥 if and only if 𝑥−1𝑦−1𝑥𝑦 = 1.

Proof. If 𝑥𝑦 = 𝑦𝑥 then

𝑦−1𝑥𝑦 = 𝑦−1𝑦𝑥
𝑦−1𝑥𝑦 = 1𝑥
𝑦−1𝑥𝑦 = 𝑥

𝑥−1𝑦−1𝑥𝑦 = 𝑥−1𝑥
𝑥−1𝑦−1𝑥𝑦 = 1

Now to prove the converse direction, if 𝑥−1𝑦−1𝑥𝑦 = 1 then

𝑥1𝑥−1𝑦−1𝑥𝑦 = 𝑥
1𝑦−1𝑥𝑦 = 𝑥
𝑦−1𝑥𝑦 = 𝑥

𝑦𝑦−1𝑥𝑦 = 𝑦𝑥
1𝑥𝑦 = 𝑦𝑥
𝑥𝑦 = 𝑦𝑥

Therefore, 𝑥𝑦 = 𝑦𝑥 if and only if 𝑦−1𝑥𝑦 = 𝑥 if and only if 𝑥−1𝑦−1𝑥𝑦 = 1.

19. Let 𝑥 ∈ 𝐺 and let 𝑎, 𝑏 ∈ ℤ+.

(a) Prove that 𝑥𝑎+𝑏 = 𝑥𝑎𝑥𝑏 and (𝑥𝑎)𝑏 = 𝑥𝑎𝑏.

Proof. If 𝑥𝑎+𝑏 then there are 𝑎 + 𝑏 terms of 𝑥 multiplied together. That is

𝑥𝑎+𝑏 = 𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋯ 𝑥𝑎 ⋅ 𝑥𝑎+1 ⋅ 𝑥𝑎+2 ⋯ 𝑥𝑎+𝑏
= (𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋯ 𝑥𝑎)(𝑥1 ⋅ 𝑥2 ⋯ 𝑥𝑏)
= 𝑥𝑎𝑥𝑏

If (𝑥𝑎)𝑏 then there are 𝑎 terms of 𝑥 multiplied together that are then themselves multiplied together 𝑏
times. That is (𝑥𝑎)𝑏 = 𝑥𝑎1 ⋅ 𝑥𝑎2 ⋯ 𝑥𝑎𝑏 . Since we know that 𝑥𝑎+𝑏 = 𝑥𝑎𝑥𝑏 we see that 𝑥𝑎𝑥𝑎 = 𝑥𝑎+𝑎 = 𝑥2𝑎 so
that we have (𝑥𝑎)𝑏 = 𝑥𝑎1 ⋅ 𝑥𝑎2 ⋯ 𝑥𝑎𝑏 = 𝑥𝑎1+𝑎2+𝑎3+⋯+𝑎𝑏 = 𝑥𝑎𝑏.

(b) Prove that (𝑥𝑎)−1 = 𝑥−𝑎.

Proof. From proof of part (a) above we know that (𝑥𝑎)𝑏 = 𝑥𝑎𝑏, let 𝑏 = −1

(c) Establish part (a) for arbitrary integers 𝑎 and 𝑏 (positive, negative or zero).

positive: we already established part (a) using arbitrary positive integers.

zero: 𝑥0+𝑏 = 𝑥0𝑥𝑏 ⟹ 𝑥𝑏 = 1𝑥𝑏 = 𝑥𝑏, 𝑥𝑎+0 = 𝑥𝑎𝑥0 ⟹ 𝑥𝑎 = 𝑥𝑎1 = 𝑥𝑎, (𝑥0)𝑏 = 𝑥0𝑏 ⟹ (1)𝑏 = 𝑥0 ⟹
1 = 1, (𝑥𝑎)0 = 𝑥𝑎0 ⟹ 1 = 𝑥0 ⟹ 1 = 1.



negative:

𝑥−𝑎+𝑏 = 𝑥−1
1 ⋅ 𝑥−1

2 ⋅ 𝑥−1
3 ⋯ 𝑥−1

𝑎 ⋅ 𝑥1 ⋅ 𝑥2 ⋯ 𝑥𝑏
= (𝑥−1

1 ⋅ 𝑥−1
2 ⋅ 𝑥−1

3 ⋯ 𝑥−1
𝑎 )(𝑥1 ⋅ 𝑥2 ⋯ 𝑥𝑏)

= (𝑥−𝑎)(𝑥𝑏)
= 𝑥−𝑎𝑥𝑏

With same argument we can see that 𝑥𝑎−𝑏 = 𝑥𝑎𝑥−𝑏 and that 𝑥−𝑎−𝑏 = 𝑥−𝑎𝑥−𝑏.

From part (a) we know (𝑥𝑎)𝑏 = 𝑥𝑎𝑏 so that we have (𝑥−𝑎)𝑏 = 𝑥−𝑎𝑏, (𝑥𝑎)−𝑏 = 𝑥𝑎(−𝑏) = 𝑥−𝑎𝑏, and (𝑥−𝑎)−𝑏 =
𝑥(−𝑎)(−𝑏) = 𝑥𝑎𝑏.

20. For 𝑥 and element in 𝐺 show that 𝑥 and 𝑥−1 have the same order.

Proof. If |𝑥| = 𝑎 and |𝑥−1| = 𝑏 then 𝑥𝑎 = 1 and (𝑥−1)𝑏 = 1 so that 𝑥𝑎 = (𝑥−1)𝑏. Therefore, since (𝑥−1)𝑏 = 𝑥−𝑏

(cf. Exercise 19) we have that 𝑥𝑎 = 𝑥−𝑏 ⟹ 𝑎 = −𝑏 but the order must be a positive number so 𝑎 must be
equal to 𝑏.

21. Let 𝐺 be a finite group and let 𝑥 be an element of 𝐺 of order 𝑛. Prove that if 𝑛 is odd, then 𝑥 = (𝑥2)𝑘 for
some 𝑘.

Proof. If |𝑥| = 𝑛 and 𝑛 = 2𝑘 − 1 for some 𝑘 ∈ ℤ+ then |𝑥| = 2𝑘 − 1 ⟹

𝑥2𝑘−1 = 1
𝑥2𝑘𝑥−1 = 1

𝑥2𝑘𝑥−1𝑥 = 1𝑥
𝑥2𝑘1 = 𝑥

(𝑥2)𝑘 = 𝑥 [Exercise 19]

Therefore, if 𝑛 is odd, then 𝑥 = (𝑥2)𝑘 for some 𝑘.

22. If 𝑥 and 𝑔 are elements of the group 𝐺, prove that |𝑥| = |𝑔−1𝑥𝑔|. Deduce that |𝑎𝑏| = |𝑏𝑎| for all 𝑎, 𝑏 ∈ 𝐺.

Proof. Let 𝑥, 𝑔 ∈ 𝐺 and |𝑥| = 𝑎 and |𝑔| = 𝑏.

𝑥 = (𝑥−1)−1

= (𝑥−11)−1

= (𝑥−1𝑔−1𝑔)−1

= ((𝑥−1𝑔−1)(𝑔))−1

= 𝑔−1𝑥𝑔

Since 𝑥 = 𝑔−1𝑥𝑔, then |𝑥| = |𝑔−1𝑥𝑔|.

In general we have that |𝑎𝑏| = |𝑏𝑎| since by Exercise 20 we know that |𝑥| = |𝑥−1| therefore |𝑎𝑏| = |(𝑎𝑏)−1| ⟹
|𝑎𝑏| = |𝑏−1𝑎−1| ⟹ |𝑎𝑏| = |𝑏𝑎|.

23. Suppose 𝑥 ∈ 𝐺 and |𝑥| = 𝑛 < ∞. If 𝑛 = 𝑠𝑡 for some positive integers 𝑠 and 𝑡, prove that |𝑥𝑠| = 𝑡.



Proof. |𝑥| = 𝑛 then

𝑥𝑛 = 1
𝑥𝑠𝑡 = 1

(𝑥𝑠)𝑡 = 1
|𝑥𝑠| = 𝑡

Therefore, if 𝑛 = 𝑠𝑡 for some positive integers 𝑠 and 𝑡, then |𝑥𝑠| = 𝑡.

24. If 𝑎 and 𝑏 are commuting elements of 𝐺, prove that (𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛 for 𝑛 ∈ ℤ. [Do this by induction for
positive 𝑛 first.]

Proof.
[𝑛 = 0] is trivially true as anything raised to power of 0 is 1 therefore (𝑎𝑏)0 = 𝑎0𝑏0 = 1

[𝑛 > 0]

base case: 𝑎𝑏 = 𝑏𝑎, therefore (𝑎𝑏)1 = 𝑏1𝑎1 ⟹ (𝑎𝑏)1 = 𝑎1𝑏1.

induction hypothesis: Suppose (𝑎𝑏)𝑛−1 = 𝑎𝑛−1𝑏𝑛−1.

induction step: Let 𝑥 = 𝑎𝑏, then

𝑥𝑛 = 𝑥1𝑥𝑛−1 [𝑥𝑎+𝑏 = 𝑥𝑎𝑥𝑏 Exercise 19]
(𝑎𝑏)𝑛 = (𝑎𝑏)1(𝑎𝑏)𝑛−1

(𝑎𝑏)𝑛 = 𝑎𝑏𝑎𝑛−1𝑏𝑛−1 [base case and induction hypothesis]
(𝑎𝑏)𝑛 = 𝑎𝑏𝑎𝑛−1𝑏𝑛−1 [𝑎 and 𝑏 commute]
(𝑎𝑏)𝑛 = 𝑎𝑎𝑛−1𝑏𝑏𝑛−1

(𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛

[𝑛 < 0]

base case: 𝑎𝑏 = 𝑏𝑎, therefore
(𝑎𝑏)−1 = 𝑏−1𝑎−1 = 𝑎−1𝑏−1

induction hypothesis: Suppose (𝑎𝑏)−(𝑛−1) = 𝑎−(𝑛−1)𝑏−(𝑛−1).

induction step: Let 𝑥 = 𝑎𝑏, then

Since 𝑎 and 𝑏 are commutative elements we can interchange them so that

𝑥−𝑛 = 𝑥−1𝑥−(𝑛−1) = (𝑎𝑏)−𝑛 [𝑥−𝑎−𝑏 = 𝑥−𝑎𝑥−𝑏 Exercise 19]
= (𝑎𝑏)−1(𝑎𝑏)−(𝑛−1)

= 𝑎−1𝑏−1𝑎−(𝑛−1)𝑏−(𝑛−1) [base case and induction hypothesis]
= 𝑎−1𝑏−1𝑎−(𝑛−1)𝑏−(𝑛−1) [𝑎 and 𝑏 commute]
= 𝑎−1𝑎−(𝑛−1)𝑏−1𝑏−(𝑛−1)

= 𝑎−𝑛𝑏−𝑛

Therefore, if 𝑎 and 𝑏 are commuting elements of 𝐺, then (𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛 for 𝑛 ∈ ℤ.

25. Prove that if 𝑥2 = 1 for all 𝑥 ∈ 𝐺 then 𝐺 is abelian.



Proof. If 𝑥2 = 1 then 𝑥2 = 𝑥𝑥−1 since 1 = 𝑥𝑥−1. Therefore, for all 𝑥 ∈ 𝐺 we have shown that each element is
equal to its inverse. Thus, 𝑎𝑏 = (𝑎𝑏)−1 = 𝑏−1𝑎−1 = 𝑏𝑎.

26. Assume 𝐻 is a nonempty subset of (𝐺, ∗) which is closed under the binary operation on 𝐺 and is closed
under inverses, i.e., for all ℎ and 𝑘 ∈ 𝐻, ℎ𝑘 and ℎ−1 ∈ 𝐻. Prove that 𝐻 is a group under the operation ∗
restricted to 𝐻 (such a subset 𝐻 is called a subgroup of 𝐺).

Proof.
associative: Let ℎ, 𝑘, 𝑠 ∈ 𝐺. ℎ(𝑘𝑠) ⟹ ℎ𝑘𝑠 ⟹ (ℎ𝑘)𝑠.

inverses: given by hypothesis.

identity: ℎℎ−1 = 1, where 1 is the identity element.

Therefore, 𝐻 is a subgroup of 𝐺.

27. Prove that if 𝑥 is an element of the group 𝐺 then {𝑥𝑛 ∣ 𝑛 ∈ ℤ} is a subgroup (cf. the preceding exercise)
of 𝐺 (called the cyclic subgroup of 𝐺 generated by 𝑥).

Proof.
associative: Let 𝑛, 𝑘, 𝑠 ∈ ℤ.

𝑥𝑛(𝑥𝑘𝑥𝑠) = 𝑥𝑛(𝑥)𝑘+𝑠

= 𝑥𝑛+𝑘+𝑠

= (𝑥)𝑛+𝑘𝑥𝑠

= (𝑥𝑛𝑥𝑘)𝑥𝑠

inverses: For a given 𝑛 we have 𝑥𝑛 and the inverse of this is just −𝑛 so that we have 𝑥−𝑛.

identity: 𝑥0 = 1 and additionally for any 𝑛 we have 𝑥𝑛𝑥−𝑛 = 1, where 1 is the identity element.

Therefore, this a subgroup of 𝐺.

28. Let (𝐴, ∗) and (𝐵, ⋄) be groups and let 𝐴 × 𝐵 be their direct product (as defined in Example 6). Verify all
the group axioms for 𝐴 × 𝐵:

(a) Prove that the associative law holds: for all (𝑎𝑖, 𝑏𝑖) ∈ 𝐴 × 𝐵, 𝑖 = 1, 2, 3 (𝑎1, 𝑏1)[(𝑎2, 𝑏2)(𝑎3, 𝑏3)] =
[(𝑎1, 𝑏1)(𝑎2, 𝑏2)](𝑎3, 𝑏3)

Proof.

(𝑎1, 𝑏1)[(𝑎2, 𝑏2)(𝑎3, 𝑏3)] = (𝑎1, 𝑏1)(𝑎2 ∗ 𝑎3, 𝑏2 ⋄ 𝑏3)
= (𝑎1 ∗ (𝑎2 ∗ 𝑎3), 𝑏1 ⋄ (𝑏2 ⋄ 𝑏3))
= ((𝑎1 ∗ 𝑎2) ∗ 𝑎3), (𝑏1 ⋄ 𝑏2) ⋄ 𝑏3))
= (𝑎2 ∗ 𝑎3, 𝑏2 ⋄ 𝑏3)(𝑎3, 𝑏3)
= [(𝑎1, 𝑏1)(𝑎2, 𝑏2)](𝑎3, 𝑏3)

(b) Prove that (1, 1) is the identity of 𝐴 × 𝐵



Proof. (𝑎, 𝑏)(1, 1) ⟹ (𝑎 ∗ 1, 𝑏 ⋄ 1) ⟹ (𝑎, 𝑏).

(c) Prove that the inverse of (𝑎, 𝑏) is (𝑎−1, 𝑏−1).

Proof. (𝑎, 𝑏)(𝑎−1, 𝑏−1) ⟹ (𝑎∗𝑎−1, 𝑏⋄𝑏−1) ⟹ (𝑒, 𝑓 ) where 𝑒, 𝑓 are the identity elements for the groups
𝐴, 𝐵 respectively.

29. Prove that 𝐴 × 𝐵 is an abelian group if and only if both 𝐴 and 𝐵 are abelian.

Proof. If 𝐴 × 𝐵 is an abelian group then

(𝑎1, 𝑏1)(𝑎2, 𝑏2) = (𝑎2, 𝑏2)(𝑎1, 𝑏1)
= (𝑎1𝑎2, 𝑏1𝑏2) = (𝑎2𝑎1, 𝑏2𝑏1)

So that 𝑎1𝑎2 = 𝑎2𝑎1 and 𝑏1𝑏2 = 𝑏2𝑏1. Therefore, 𝐴 and 𝐵 are both abelian.

Conversely, if 𝐴 and 𝐵 are both abelian then 𝑎1𝑎2 = 𝑎2𝑎1, 𝑏1𝑏2 = 𝑏2𝑏1 and

(𝑎1𝑎2, 𝑏1𝑏2) = (𝑎2𝑎1, 𝑏2𝑏1)
= (𝑎1, 𝑏1)(𝑎2, 𝑏2)
= (𝑎2, 𝑏2)(𝑎1, 𝑏1)

Therefore, 𝐴 × 𝐵 is an abelian group.

30. Prove that the elements (𝑎, 1) and (1, 𝑏) of 𝐴 × 𝐵 commute and deduce that the order of (𝑎, 𝑏) is the least
common multiple of |𝑎| and |𝑏|.

Proof.
(𝑎, 1)(1, 𝑏) ⟹ (𝑎 ∗ 1, 1 ∗ 𝑏) ⟹ (𝑎, 𝑏)(1, 𝑏)(𝑎, 1) ⟹ (1 ∗ 𝑎, 𝑏 ∗ 1) ⟹ (𝑎, 𝑏)

Therefore (𝑎, 1)(1, 𝑏) = (1, 𝑏)(𝑎, 1).

The identity for 𝐴 × 𝐵 was shown to be (1, 1) [Exercise 28]. Therefore, since |𝑎| = 𝑚 ⟹ 𝑎𝑚 = 1 and
|𝑏| = 𝑛 ⟹ 𝑏𝑛 = 1, we see that |(𝑎, 𝑏)| = 𝑥 ⟹ (𝑎𝑥, 𝑏𝑥) = (1, 1). But in order for 𝑎𝑥, 𝑏𝑥 to be equal to 1 𝑥
needs to be a multiple of both 𝑚 and 𝑛. The lowest common multiple of 𝑚 and 𝑛 will give us this, which is
just the lowest common multiple of |𝑎| and |𝑏|.

31. Prove that any finite group 𝐺 of even order contains an element of order 2. [Let 𝑡(𝐺) be the set {𝑔 ∈ 𝐺 ∣
𝑔 ≠ 𝑔−1}. Show that 𝑡(𝐺) has an even number of elements and every non-identity element of 𝐺 − 𝑡(𝐺) has
order 2.]

Proof. 𝑒 ∉ 𝑡(𝐺) as it is its own inverse. Additionally, if 𝑔 = 𝑔−1 then |𝑔| = |𝑔−1| = 2. Therefore 𝑡(𝐺) is the set
with elements that have order greater than 2. Thus, if 𝑔 ∈ 𝑡(𝐺) then 𝑔−1 ∈ 𝑡(𝐺) so there must be an even
number of elements in t(G). Since 𝐺 and 𝑡(𝐺) both have an even number of elements so too must 𝐺 − 𝑡(𝐺)
and since one of the elements in 𝐺 − 𝑡(𝑔) is the identity element and it is the only element of order 1 the
other element must be an element of order 2.

32. Is 𝑥 is an element of finite order 𝑛 in 𝐺, prove that the elements 1, 𝑥, 𝑥2, … , 𝑥𝑛−1 are all distinct. Deduce
that |𝑥| ≤ |𝐺|.

Proof. Suppose 𝑥𝑎 = 𝑥𝑏 for some integers 𝑎 and 𝑏 with 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛 − 1. Since 1 = 𝑥𝑎𝑥−𝑎 then 1 = 𝑥𝑎𝑥−𝑎 =
𝑥𝑏𝑥−𝑎 = 𝑥𝑏−𝑎. Thus, 𝑏−𝑎 = 0 so that 𝑏 = 𝑎 and therefore 1, 𝑥, 𝑥2, … , 𝑥𝑛−1 are all distinct. All of these elements
are in 𝐺 so |𝑥| ≤ |𝐺|.



33. Let 𝑥 be an element of finite order 𝑛 in 𝐺.

(a) Prove that if 𝑛 is odd then 𝑥𝑖 ≠ 𝑥−𝑖 for all 𝑖 = 1, 2, … , 𝑛 − 1.

Proof. Suppose 𝑥𝑖 = 𝑥−𝑖 ⟹ 𝑥2𝑖 = 1. But we were given that |𝑥| = 2𝑖 + 1 ⟹ 𝑥2𝑖+1 = 1, which is a
contradiction. Therefore 𝑥𝑖 ≠ 𝑥−𝑖.

(b) Prove that if 𝑛 = 2𝑘 and 1 ≤ 𝑖 < 𝑛 then 𝑥𝑖 = 𝑥−1 if and only if 𝑖 = 𝑘.

Proof. Since 𝑛 = 2𝑘 we know that |𝑥| = 2𝑘 ⟹ 𝑥2𝑘 = 1.

If 𝑥𝑖 = 𝑥−1 then

𝑥𝑘 = 𝑥−𝑘 [(𝑥𝑘)2 = 1]
(𝑥)𝑘 = (𝑥−1)𝑘

((𝑥)𝑘)−𝑘 = ((𝑥−1)𝑘)−𝑘

𝑥 = 𝑥−1

Therefore, since 𝑥 = 𝑥−1

𝑥𝑥 = 𝑥−1𝑥 = 1
𝑥−1𝑥−1 = 1 [𝑥 = 𝑥−1]
(𝑥−1)2 = 1
(𝑥−1)2 = (𝑥𝑘)2 [𝑥2𝑘 = 1]

((𝑥−1)2)−2 = ((𝑥𝑘)2)−2

𝑥−1 = 𝑥𝑘

𝑥𝑖 = 𝑥𝑘 [𝑥𝑖 = 𝑥−1]

Therefore, 𝑖 = 𝑘.

Conversely, if 𝑖 = 𝑘 then (𝑥𝑖)2 = 1 ⟹ 𝑥𝑖 = 𝑥−1 as 𝑥𝑖 must be its own inverse from the same argument
above.

Therefore, if 𝑛 = 2𝑘 and 1 ≤ 𝑖 < 𝑛 then 𝑥𝑖 = 𝑥−1 if and only if 𝑖 = 𝑘.

34. If 𝑥 is an element of infinite order in 𝐺, prove that the elements 𝑥𝑛, 𝑛 ∈ ℤ are all distinct.

Proof. Suppose 𝑥𝑎 = 𝑥𝑏 for some integers 𝑎 ≤ 𝑏. Since 1 = 𝑥𝑎𝑥−𝑎 then 1 = 𝑥𝑎𝑥−𝑎 = 𝑥𝑏𝑥−𝑎 = 𝑥𝑏−𝑎. Thus,
𝑏−𝑎 = 0 so that 𝑏 = 𝑎 and therefore 𝑥𝑛 is distinct. Thisworks for−𝑎 ≤ −𝑏 aswellwith the same argument.

35. If 𝑥 is an element of finite order 𝑛 in 𝐺, use the Division Algorithm to show that any integral power
of 𝑥 equals one of the elements in the set {1, 𝑥, 𝑥2, … , 𝑥𝑛−1} (so these are all distinct elements of the cyclic
subgroup (cf. Exercise 27 above) of 𝐺 generated by 𝑥).

Proof. By the Division Algorithmwe know that 𝑠 = 𝑛𝑞+𝑟 for some integer 𝑠 and where 0 ≤ 𝑟 < 𝑛. Therefore

𝑥𝑠 = 𝑥𝑛𝑞+𝑟

= 𝑥𝑛𝑞𝑥𝑟

= 1 ⋅ 𝑥𝑟

= 𝑥𝑟



Therefore, 𝑠 = 𝑟. Since 𝑟 ∈ {0, 1, 2, … , 𝑛 − 1} we see that 𝑥𝑟 will equal one of the elements in the set
{1, 𝑥, 𝑥2, … , 𝑥𝑛−1}.

36. Assume 𝐺 = {1, 𝑎, 𝑏, 𝑐} is a group of order 4 with identity 1. Assume also that 𝐺 has no elements of order
4 (so by Exercise 32, every element has order ≤ 3). use the cancellation laws to show that there is a unique
group table for 𝐺. Deduce that 𝐺 is abelian.

Proof. We know that 𝑎𝑏 ≠ 𝑎 and 𝑎𝑏 ≠ 𝑏. Therefore 𝑎𝑏 = 1 or 𝑎𝑏 = 𝑐. Assume that 𝑎𝑏 = 1. Then this means
that 𝑎 and 𝑏 are inverses so that 𝑎2 ≠ 1 ⟹ 𝑎3 = 1 since we know it can’t be of order 1 (identity) and it can’t
have order higher than 3. Thus, 𝑎𝑏 = 1 ⟹ 𝑏 = 𝑎2 and 𝑎4 = 𝑏2 ⟹ 𝑎 = 𝑏2. But then we no longer have a
choice for 𝑎𝑐 as 𝑎𝑐 ≠ 1 (𝑎𝑏 = 1), 𝑎𝑐 ≠ 𝑏 (𝑏 = 𝑎2), 𝑎𝑐 ≠ 𝑐, 𝑎𝑐 ≠ 𝑎. This is a contradiction so 𝑎𝑏 must be equal to
𝑐.

We could have used the above argument to find 𝑏𝑎 as well. Furthermore the entirety can be repeated to find
𝑎𝑐 = 𝑐𝑎 = 𝑏 and 𝑐𝑏 = 𝑏𝑐 = 𝑎. Since none of the elements were found to have order 3, this means all of the
non-identity elements of this group have order 2 so that:

𝑎2 = (𝑏𝑐)2 = (𝑐𝑏)2 = 1𝑏2 = (𝑎𝑐)2 = (𝑐𝑎)2 = 1𝑐2 = (𝑏𝑎)2 = (𝑎𝑏)2 = 1

Therefore, this group is abelian [Exercise 25].

1.2 DIHEDRAL GROUPS

In these exercises, 𝐷2𝑛 has the usual presentation 𝐷2𝑛 = ⟨𝑟, 𝑠 ∣ 𝑟𝑛 = 𝑠2 = 1, 𝑟𝑠 = 𝑠𝑟−1⟩.

1. Compute the order of each of the elements in the following groups:

(a) 𝐷6 = {1, 𝑟, 𝑟2, 𝑠, 𝑠𝑟, 𝑠𝑟2}

|1| = 1
|𝑟| = 3

|𝑟2| = 3
|𝑠| = 2

|𝑠𝑟| = 2
|𝑠𝑟2| = 2

(b) 𝐷8 = {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3}

|1| = 1
|𝑟| = 4

|𝑟2| = 2
|𝑟3| = 4
|𝑠| = 2

|𝑠𝑟| = 2
|𝑠𝑟2| = 2
|𝑠𝑟3| = 2



(c) 𝐷10 = {1, 𝑟, 𝑟2, 𝑟3, 𝑟4, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3, 𝑠𝑟4}

|1| = 1
|𝑟| = 5

|𝑟2| = 5
|𝑟3| = 5
|𝑟4| = 5
|𝑠| = 2

|𝑠𝑟| = 2
|𝑠𝑟2| = 2
|𝑠𝑟3| = 2
|𝑠𝑟4| = 2

2. Use the generators and relations above to show that if 𝑥 is any element of 𝐷2𝑛 which is not a power of 𝑟,
then 𝑟𝑥 = 𝑥𝑟−1.

Proof. If 𝑥 ∈ 𝐷2𝑛 such that 𝑥 is not a power of 𝑟 then using the generators and relations above this means
that it can only be 𝑠 as all other elements will have a power of 𝑟 in them (the identity is 𝑟𝑛 = 1). Therefore,
using the relation 𝑟𝑠 = 𝑠𝑟−1 ⟹ 𝑟𝑥 = 𝑥𝑟−1.

3. Use the generators and relations above to show that every element of 𝐷2𝑛 which is not a power of 𝑟 has
order 2. Deduce that 𝐷2𝑛 is generated by the two elements 𝑠 and 𝑠𝑟, both of which have order 2.

Proof. We know that the only element of 𝐷2𝑛 that is not a power of 𝑟 is 𝑠 [Exercise 2] and by the relation
𝑠2 = 1 we know that |𝑠| = 2.

We can also easily see that the order of 𝑠𝑟 is 2 as well

(𝑠𝑟)(𝑠𝑟) = 𝑠(𝑟𝑠)𝑟
= 𝑠𝑠𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠2 = 1 [𝑠2 = 1]

Additionally, all elements of 𝐷2𝑛 are generated from 𝑠 and 𝑠𝑟 since 𝑠(𝑠𝑟) = 𝑠2𝑟 = 𝑟. Therefore, the unique
elements 𝑠𝑘𝑟𝑖, where 𝑘 ∈ {0, 1} and 𝑟 ∈ {0, 1, 2, … , 𝑛 − 1} can all be generated from 𝑠 and 𝑠𝑟.

4. If 𝑛 = 2𝑘 is even and 𝑛 ≥ 4, show that 𝑧 = 𝑟𝑘 is an element of order 2 which commutes with all elements
of 𝐷2𝑛. Show also that 𝑧 is the only non-identity element of 𝐷2𝑛 which commutes with all elements of 𝐷2𝑛.
[cf. Exercise 33 of Section 1.]

Proof. 𝑟𝑘𝑟𝑘 = 𝑟2𝑘 = 𝑟𝑛 = 1 ⟹ |𝑟𝑘 | = 2. We know that 𝑟𝑘 = 𝑟−1 and that 𝑟 = 𝑟−1 as it is self inversive
[Exercise 33]. Additionally we know that 𝑟𝑘 is the only power of 𝑟 that has this property [Exercise 33]. Thus,
using the relation 𝑟𝑠 = 𝑠𝑟−1 we see that 𝑟𝑠 = 𝑠𝑟 and that it is the only non-identity element that commutes
with all the elements of 𝐷2𝑛.



5. If 𝑛 is odd and 𝑛 ≥ 3, show that the identity is the only element of 𝐷2𝑛 which commutes with all elements
of 𝐷2𝑛. [cf. Exercise 33 of Section 1.]

Proof. If 𝑛 is odd and 𝑛 ≥ 3 then we know that none of the elements other than the identity element are
equal to their own inverse [Exercise 33 Section 1]. Therefore, the identity element is the only element that
will be able to commute with all the elements of 𝐷2𝑛.

6. Let 𝑥 and 𝑦 be elements of order 2 in any group𝐺. Prove that if 𝑡 = 𝑥𝑦 then 𝑡𝑥 = 𝑥𝑡−1 (so that if 𝑛 = |𝑥𝑦| < ∞
then 𝑥, 𝑡 satisfy the same relations in 𝐺 as 𝑠, 𝑟 do in 𝐷2𝑛).

Proof. |𝑥| = |𝑦| = 2 ⟹ 𝑥2 = 1, 𝑦2 = 1 ⟹ 𝑥 = 𝑥−1, 𝑦 = 𝑦−1. If 𝑡 = 𝑥𝑦, then

𝑡𝑥 = (𝑥𝑦)𝑥
= 𝑥(𝑦𝑥)
= 𝑥(𝑦−1𝑥−1)
= 𝑥(𝑥𝑦)−1

= 𝑥𝑡−1

Therefore, if 𝑡 = 𝑥𝑦 then 𝑡𝑥 = 𝑥𝑡−1.

7. Show that ⟨𝑎, 𝑏 ∣ 𝑎2 = 𝑏2 = (𝑎𝑏)𝑛 = 1⟩ gives a presentation for 𝐷2𝑛 in terms of the two generators 𝑎 = 𝑠 and
𝑏 = 𝑠𝑟 of order 2 computed in Exercise 3 above. [Show that the relations for 𝑟 and 𝑠 follow from the relations
for 𝑎 and 𝑏 and, conversely, the relations for 𝑎 and 𝑏 follow from those for 𝑟 and 𝑠.]

Proof. 𝑎 = 𝑠 and 𝑏 = 𝑠𝑟 and using the relations 𝑎2 = 1, 𝑏2 = 1 ⟹ 𝑠2 = 1, (𝑠𝑟)2 = 1. Then

(𝑠𝑟)(𝑠𝑟) = 𝑠𝑠 [𝑠2 = 1, (𝑠𝑟)2 = 1]
𝑠−1𝑠𝑟𝑠𝑟 = 𝑠−1𝑠𝑠

𝑟𝑠𝑟 = 𝑠
𝑟𝑠𝑟𝑟−1 = 𝑠𝑟−1

𝑟𝑠 = 𝑠𝑟−1

Conversely, we can also follow the same steps backwards to arrive at 𝑎 and 𝑏.

8. Find the order of the cyclic subgroup of 𝐷2𝑛 generated by 𝑟 (cf. Exercise 27 of Section 1).

Proof. The cyclic subgroup of 𝐷2𝑛 is {1, 𝑟, 𝑟2, … , 𝑟𝑛−1} so that the order is 𝑛. This is the same as the order for
𝑟 as |𝑟| = 𝑛.

In each of Exercises 9 to 13 you can find the order of the group of rigid motions in ℝ3 (also called the group
of rotations) of the given Platonic solid by following the proof for the order of 𝐷2𝑛: find the number of
positions to which an adjacent pair of vertices can be sent. Alternatively, you can find the number of places
to which a given face may be sent and, once a face is fixed, the number of positions to which a vertex on that
face may be sent.

9. Let 𝐺 be the group of rigid motions in ℝ3 of a tetrahedron. Show that |𝐺| = 12.



Proof.

vertices and faces - 4 vertices and faces, 4 axes through a vertex and the center of the opposing face with 120 degree rotations = 8 rotations
edges - 6 edges with 3 axes through center of opposite edges with 180 degree rotations = 3 rotations

|𝐺| = 1 + 8 + 3 = 12.

10. Let 𝐺 be the group of rigid motions in ℝ3 of a cube. Show that |𝐺| = 24.

Proof.

vertices: 8 vertices with 4 axes with 120 degree rotations = 8 rotations
faces: 6 faces with 3 axes with 90 degree rotations = 9 rotations
edges: 12 edges with 6 axes with 180 degree rotations = 6 rotations

|𝐺| = 1 + 8 + 9 + 6 = 24.

11. Let 𝐺 be the group of rigid motions in ℝ3 of a octahedron. Show that |𝐺| = 24.

Proof.

vertices: 6 with 3 axis with 90 degree rotations = 9 rotations
faces: 8 with 4 axis with 120 degree rotations = 8 rotations
edges: 12 with 6 axis with 180 degree rotations = 6 rotations

|𝐺| = 1 + 9 + 8 + 6 = 24.

12. Let 𝐺 be the group of rigid motions in ℝ3 of a dodecahedron. Show that |𝐺| = 60.

Proof.

vertices: 20 with 10 axis with 120 degree rotations = 20 rotations
faces: 12 with 6 axis with 72 degree rotations = 24 rotations
edges: 30 with 15 axis with 180 degree rotations = 15 rotations

|𝐺| = 1 + 20 + 24 + 15 = 60.

13. Let 𝐺 be the group of rigid motions in ℝ3 of a icosahedron. Show that |𝐺| = 60.

Proof.

vertices: 12 with 6 axis with 72 degree rotations = 24 rotations
faces: 20 with 10 axis with 120 degree rotations = 20 rotations
edges: 30 with 15 axis with 180 degree rotations = 15 rotations

|𝐺| = 1 + 24 + 20 + 15 = 60.



14. Find a set of generators for ℤ.

We can generate ℤ with {−1, 1} as all elements of ℤ can be created from different additive combinations of
these two numbers.

15. Find a set of generators and relations for ℤ/𝑛ℤ.

ℤ/𝑛ℤ = {0, 1, 2, … , 𝑛 − 1} which can be represented with the presentation < 𝑥 ∣ 𝑥𝑛 = 1 >.

16. Show that the group ⟨𝑥1, 𝑦1 ∣ 𝑥2
1 = 𝑦2

1 = (𝑥1𝑦1)2 = 1⟩ is the dihedral group 𝐷4 (where 𝑥1 may be replaced
be the letter 𝑟 and 𝑦1 by 𝑠). [Show that the last relation is the same as: 𝑥1𝑦1 = 𝑦1𝑥−1

1 .]

Proof. If we replace 𝑥1 with 𝑟 and 𝑦1 with 𝑠 we see from the relations that 𝑥2
1 = 𝑟2 = 1 and 𝑦2

1 = 𝑠2 = 1.
Additionally,

(𝑥1𝑦1)2 = 1
(𝑥1𝑦1)(𝑥1𝑦1) = 1

(𝑥1𝑦1)(𝑥1𝑦1)(𝑥1𝑦1)−1 = 1(𝑥1𝑦1)−1

(𝑥1𝑦1) = (𝑥1𝑦1)−1

𝑥1𝑦1 = 𝑦−1
1 𝑥−1

1

Therefore, since 𝑦2
1 = 1 ⟹ 𝑦1 = 𝑦−1

1 we see that

𝑥1𝑦1 = 𝑦−1
1 𝑥−1

1
𝑥1𝑦1 = 𝑦1𝑥−1

1
𝑟𝑠 = 𝑠𝑟−1 [when replacing 𝑥1 with 𝑟 and 𝑦1 with 𝑠]

Since the 𝑟2 = 1 we see that this group is the dihedral group 𝐷4.

17. Let 𝑋2𝑛 be the group whose presentation is displayed in (1.2).

(a) Show that if 𝑛 = 3𝑘, then 𝑋2𝑛 has order 6, and it has the same generators and relations as 𝐷6 when 𝑥 is
replaced by 𝑟 and 𝑦 by 𝑠.

Proof. If 𝑛 = 3𝑘 then 𝑥3𝑘 = 𝑦2 = 1. From the textbook we were shown that 𝑋2𝑛 yields 𝑥 = 𝑥4 using the
relation 𝑥𝑦 = 𝑦𝑥2. Therefore,

𝑥 = 𝑥4

𝑥−1𝑥 = 𝑥−1𝑥4

1 = 𝑥3

𝑦2 = 𝑥3

Therefore, 𝑘 = 1. Thus, the order of 𝐷2𝑛 is 2(3𝑘) = 2(3) = 6. Since 𝑥3 = 1 we see that 𝑥−1 = 𝑥2 so that
when replacing 𝑥 by 𝑟 and 𝑦 by 𝑠 we see that

𝑥𝑦 = 𝑦𝑥2

𝑥𝑦 = 𝑦𝑥−1

𝑟𝑠 = 𝑠𝑟−1

Therefore, 𝑥2𝑛 has been shown to have order 6, and it has the same generators and relations as 𝐷6.

(b) Show that if (3, 𝑛) = 1, then 𝑥 satisfies the additional relation: 𝑥 = 1. In this case deduce that 𝑋2𝑛 has
order 2. [Use the facts that 𝑥𝑛 = 1 and 𝑥3 = 1.]



Proof. Since 𝑥𝑛 = 1 and 𝑥3 = 1 we have that 𝑥𝑛 = 𝑥3 but (3, 𝑛) = 1 ⟹ 𝑛 ≠ 3𝑘 for some 𝑘 ∈ ℤ.
Therefore, for this equation to be true and still satisfy 𝑥𝑛 = 1 we must have that 𝑥 = 1. Thus, 𝑛 = 1 and
by deduction this means that 𝑋2𝑛 has order 2.

18. Let 𝑌 be the group whose presentation is displayed in (1.3).

(a) Show that 𝑣2 = 𝑣−1. [Use the relation: 𝑣3 = 1.]

Proof.

𝑣3 = 1
𝑣3𝑣−1 = 𝑣−1

𝑣2 = 𝑣−1

(b) Show that 𝑣 commutes with 𝑢3. [Show that 𝑣2𝑢3𝑣 = 𝑢3 by writing the left hand side as (𝑣2𝑢2)(𝑢𝑣) and
using the relations to reduce this to the right hand side. Then use part (a).]

Proof.

𝑣2𝑢3𝑣 = 𝑢3

𝑣2𝑢2(𝑢𝑣) = 𝑢3

𝑣2𝑢2(𝑢𝑣)(𝑢𝑣)−1 = 𝑢3(𝑢𝑣)−1

𝑣2𝑢2 = 𝑢3𝑣−1𝑢−1

𝑣−1𝑢2 = 𝑢3𝑣2𝑢−1 [re-written using part (a)]
𝑣−1𝑢3 = 𝑢3𝑣2

𝑢3 = 𝑣𝑢3𝑣2

Therefore, 𝑣2𝑢3𝑣 = 𝑣𝑢3𝑣2 and we can see that 𝑣 commutes with 𝑢3.

(c) Show that 𝑣 commutes with 𝑢. [Show that 𝑢9 = 𝑢 and then use part (b).]

Proof. 𝑢9 = 𝑢4𝑢4𝑢 = 𝑢 since 𝑢4 = 1.

From part (b) we saw that 𝑢3 = 𝑣𝑢3𝑣2 and 𝑢3 = 𝑣2𝑢3𝑣. Since, 𝑢 = 𝑢9 = (𝑢3)3 = (𝑣𝑢3𝑣2)3 and
𝑢 = 𝑢9 = (𝑢3)3 = (𝑣2𝑢3𝑣)3, then

(𝑣𝑢3𝑣2)3 = (𝑣2𝑢3𝑣)3

(𝑣𝑢3𝑣2)(𝑣𝑢3𝑣2)(𝑣𝑢3𝑣2) = (𝑣2𝑢3𝑣)(𝑣2𝑢3𝑣)(𝑣2𝑢3𝑣)

Using the fact that 𝑣3 = 1 these can be reduced to

𝑣𝑢3𝑢3𝑢3𝑣2 = 𝑣2𝑢3𝑢3𝑢3𝑣
𝑣𝑢9𝑣2 = 𝑣2𝑢9𝑣
𝑣𝑢𝑣2 = 𝑣2𝑢𝑣

which shows that 𝑣 commutes with 𝑢.

(d) Show that 𝑢𝑣 = 1. [Use part (c) and the last relation.]

Proof.

𝑢𝑣 = 𝑣2𝑢2

𝑢𝑣 = 𝑣𝑣𝑢𝑢



𝑢𝑣 = (𝑢𝑣)(𝑢𝑣) [𝑢 and 𝑣 commute]
(𝑢𝑣)(𝑢𝑣)−1 = (𝑢𝑣)(𝑢𝑣)(𝑢𝑣)−1

1 = 𝑢𝑣

(e) Show that 𝑢 = 1, deduce that 𝑣 = 1, and conclude that 𝑌 = 1. [Use part (d) and the equation 𝑢4𝑣3 = 1.]

Proof. Since 𝑢4 = 𝑣3 = 1 ⟹ 𝑢4𝑣3 = (1)(1) = 1. From part (d) we know that 𝑢𝑣 = 1, therefore

𝑢4𝑣3 = 1
𝑢𝑢𝑢(𝑢𝑣)𝑣𝑣 = 1

𝑢𝑢(𝑢𝑣)𝑣 = 1
𝑢(𝑢𝑣) = 1

𝑢 = 1

Additionally, since 𝑢𝑣 = 1 and 𝑢 = 1 we see that 𝑢𝑣 = 1𝑣 = 1 ⟹ 𝑣 = 1.

1.3 SYMMETRIC GROUPS

1. Let 𝜎 be the permutation

1 ↦ 3 2 ↦ 4 3 ↦ 5 4 ↦ 2 5 ↦ 1

and let 𝜏 be the permutation

1 ↦ 5 2 ↦ 3 3 ↦ 2 4 ↦ 4 5 ↦ 1

Find the cycle decompositions of each of the following permutations: 𝜎, 𝜏, 𝜎2, 𝜎𝜏, 𝜏𝜎, and 𝜏2𝜎 .

𝜎 = (1 3 5)(2 4)
𝜏 = (1 5)(2 3)

𝜎2 = (1 5 3)
𝜎𝜏 = (2 5 3 4)
𝜏𝜎 = (1 2 4 3)

𝜏2𝜎 = (1 3 5)(2 4)

2. Let 𝜎 be the permutation

1 ↦ 13 2 ↦ 2 3 ↦ 15 4 ↦ 14 5 ↦ 10
6 ↦ 6 7 ↦ 12 8 ↦ 3 9 ↦ 4 10 ↦ 1
11 ↦ 17 12 ↦ 9 13 ↦ 5 14 ↦ 11 15 ↦ 8

and let 𝜏 be the permutation

1 ↦ 14 2 ↦ 9 3 ↦ 10 4 ↦ 2 5 ↦ 12
6 ↦ 6 7 ↦ 5 8 ↦ 11 9 ↦ 15 10 ↦ 3
11 ↦ 8 12 ↦ 7 13 ↦ 4 14 ↦ 1 15 ↦ 13

Find the cycle of decompositions of the following permutations: 𝜎, 𝜏, 𝜎2, 𝜎𝜏, 𝜏𝜎, and 𝜏2𝜎 .

𝜎 = (1 13 5 10)(3 15 8)(4 14 11 7 12 9)



𝜏 = (1 14)(2 9 15 13 4)(3 10)(5 12 7)(8 11)
𝜎2 = (1 5)(3 8 15)(4 11 12)(7 9 14)(10 13)
𝜎𝜏 = (1 11 3)(2 4)(5 9 8 7 10 15)(13 14)
𝜏𝜎 = (1 4)(2 9)(3 13 12 15 11 5)(8 10 14)

𝜏2𝜎 = (1 2 15 8 3 4 14 11 12 13 7 5 10)

3. For each of the permutations whose cycle decompositions were computed in the preceding two exercises
compute its order.

Problem 1:

|𝜎| = 2 [𝜎2 ∘ 𝜎 = (5 4 1 2 3)(3 4 5 2 1) = (1 2 3 4 5)]
|𝜏| = 2 [𝜏 ∘ 𝜏 = (5 3 2 4 1)(5 3 2 4 1) = (1 2 3 4 5)]

|𝜎2| = 6 [(𝜎2)5 ∘ 𝜎2 = (3 4 5 2 1)(5 4 1 2 3) = (1 2 3 4 5)]
|𝜎𝜏| = 4 [(𝜎𝜏)3 ∘ 𝜎𝜏 = (1 4 5 3 2)(1 5 4 2 3) = (1 2 3 4 5)]
|𝜏𝜎| = 4 [(𝜏𝜎)3 ∘ 𝜏𝜎 = (3 1 4 2 5)(2 4 1 3 5) = (1 2 4 5)]

|𝜏𝜎2| = 6 [(𝜏𝜎2)5 ∘ 𝜏𝜎2 = (5 4 1 2 3)(3 4 5 2 1) = (1 2 3 4 5)]

Problem 2:

|𝜎| = 12
|𝜏| = 30

|𝜎2| = 6
|𝜎𝜏| = 6
|𝜏𝜎| = 6

|𝜏𝜎2| = 8

4. Compute the order of each of the elements in the following groups:

(a) 𝑆3 The elements of 𝑆3 have the cycle decompositions: 1, (1 2), (1 3), (2 3), (1 2 3), and (1 3 2).

|1| = 1 since this is the identity element.
|(1 2)| = 2 [(1 2)(1 2) = (1)(2)(3) = 1]
|(1 3)| = 2 [(1 3)(1 3) = (1)(2)(3) = 1]
|(1 3)| = 2 [(2 3)(2 3) = (1)(2)(3) = 1]

|(1 2 3)| = 3 [(1 2 3)(1 2 3) = (1 3 2) ⟹ (1 2 3)(1 3 2) = (1)(2)(3) = 1]
|(1 3 2)| = 3 [(1 3 2)(1 3 2) = (1 2 3) ⟹ (1 3 2)(1 2 3) = (1)(2)(3) = 1]

(b) 𝑆4 The elements of 𝑆4 have the cycle decompositions: 1, (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (1 2 3), (1
2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3 4), (1 2 4 3),
(1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2).

|1| = 1 since this is the identity element.
|(1 3)| = 2 [(1 3)(1 3) = 1]
|(1 2)| = 2 [(1 2)(1 2) = 1]
|(1 4)| = 2 [(1 4)(1 4) = 1]
|(2 3)| = 2 [(2 3)(2 3) = 1]



|(2 4)| = 2 [(2 4)(2 4) = 1]
|(3 4)| = 2 [(3 4)(3 4) = 1]

|(1 2 3)| = 3 [(1 2 3)(1 2 3) = (1 3 2) ⟹ (1 2 3)(1 3 2) = 1]
|(1 2 4)| = 3 [(1 2 4)(1 2 4) = (1 4 2) ⟹ (1 2 4)(1 4 2) = 1]
|(1 3 2)| = 3 [(1 3 2)(1 3 2) = (1 2 3) ⟹ (1 3 2)(1 2 3) = 1]
|(1 3 4)| = 3 [(1 3 4)(1 3 4) = (1 4 3) ⟹ (1 3 4)(1 4 3) = 1]
|(1 4 2)| = 3 [(1 4 2)(1 4 2) = (1 2 4) ⟹ (1 4 2)(1 2 4) = 1]
|(1 4 3)| = 3 [(1 4 3)(1 4 3) = (1 3 4) ⟹ (1 4 3)(1 3 4) = 1]
|(2 3 4)| = 3 [(2 3 4)(2 3 4) = (2 4 3) ⟹ (2 3 4)(2 4 3) = 1]
|(2 4 3)| = 3 [(2 4 3)(2 4 3) = (2 3 4) ⟹ (2 4 3)(2 3 4) = 1]

|(1 2)(3 4)| = 2 [((1 2)(3 4))((1 2)(3 4)) = 1]
|(1 3)(2 4)| = 2 [((1 3)(2 4))((1 3)(2 4)) = 1]
|(1 4)(2 3)| = 2 [((1 4)(2 3))((1 4)(2 3)) = 1]

|(1 2 3 4)| = 4 [(1 2 3 4)(1 2 3 4) = (1 3)(2 4) ⟹ (1 2 3 4)((1 3)(2 4)) = (1 4 3 2) ⟹ (1 2 3 4)(1 4 3 2) = 1]
|(1 2 4 3)| = 4 [(1 2 4 3)(1 2 4 3) = (1 4)(2 3) ⟹ (1 2 4 3)((1 4)(2 3)) = (1 3 4 2) ⟹ (1 2 4 3)(1 3 4 2) = 1]
|(1 3 2 4)| = 4 [(1 3 2 4)(1 3 2 4) = (1 2)(3 4) ⟹ (1 3 2 4)((1 2)(3 4)) = (1 4 2 3) ⟹ (1 3 2 4)(1 4 2 3) = 1]
|(1 3 4 2)| = 4 [(1 3 4 2)(1 3 4 2) = (1 4)(3 2) ⟹ (1 3 4 2)((1 4)(3 2)) = (1 2 4 3) ⟹ (1 3 4 2)(1 2 4 3) = 1]
|(1 4 2 3)| = 4 [(1 4 2 3)(1 4 2 3) = (1 2)(3 4) ⟹ (1 4 2 3)((1 2)(3 4)) = (1 3 2 4) ⟹ (1 4 2 3)(1 3 2 4) = 1]
|(1 4 3 2)| = 4 [(1 4 3 2)(1 4 3 2) = (1 3)(2 4) ⟹ (1 4 3 2)((1 3)(2 4)) = (1 2 3 4) ⟹ (1 4 3 2)(1 2 3 4) = 1]

5. Find the order of (1 12 8 10 4)(2 13)(5 11 7)(6 9).

Let 𝛾 =(1 12 8 10 4)(2 13)(5 11 7)(6 9)

|𝛾| = 30 because:
𝛾2 = (1 8 4 12 10)(5 7 11)
𝛾3 = (1 10 12 4 8)(2 13)(6 9)
𝛾4 = (1 410 8 12)(5 11 7)
𝛾5 = (2 13)(5 7 11)(6 9)
𝛾6 = (1 12 8 10 4)
𝛾7 = (1 8 4 12 10)(2 13)( 11 7)(6 9)
𝛾8 = (1 10 12 4 8)(5 7 11)
𝛾9 = (1 4 10 8 12)(2 13)(6 9)

𝛾10 = (5 11 7)
𝛾11 = (1 12 8 10 4)(2 13)(5 7 11)(6 9)
𝛾12 = (1 8 4 12 10)
𝛾13 = (1 10 12 4 8)(2 13)(5 11 7)(6 9)
𝛾14 = (1 4 10 8 12)(5 711)
𝛾15 = (2 13)(6 9)
𝛾16 = (1 12 8 10 4)(5 11 7)
𝛾17 = (1 8 4 12 10)(2 13)(5 7 11)(6 9)
𝛾18 = (1 10 12 4 8)
𝛾19 = (1 4 10 8 12)(2 13)(6 9)



𝛾20 = (5 7 11)
𝛾21 = (1 12 8 10 4)(2 13)(6 9)
𝛾22 = (1 8 4 12 10)(5 11 7)
𝛾23 = (1 10 12 4 8)(2 13)(5 7 11)(6 9)
𝛾24 = (1 4 10 8 12)
𝛾25 = (2 13)(5 11 7)(6 9)
𝛾26 = (1 12 8 10 4)(5 7 11)
𝛾27 = (1 8 4 12 10)(2 13)(6 9)
𝛾28 = (1 10 12 4 8)(5 11 7)
𝛾29 = (1 4 10 8 12)(2 13)(5 7 11)(6 9)
𝛾30 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13) = 1

6. Write out the cycle decomposition of each element of order 4 in 𝑆4.

(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)

7. Write out the cycle decomposition of each element of order 2 in 𝑆4.

(1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

8. Prove that if Ω = {1, 2, 3, … } then 𝑆Ω is an infinite group (do not say ∞! = ∞).

Proof. Since Ω = {1, 2, 3, … } is a countably infinite set (i.e. this is just ℤ+) then there will be an infinite
amount of permutations just from the permutation of exchanging two elements and leaving all others fixed.
Therefore, we can see that 𝑆Ω is an infinite group as there are many more permutations than the ones we
have considered.

9.

(a) Let 𝜎 be the 12-cycle (1 2 3 4 5 6 7 8 9 10 11 12). For which positive integers 𝑖 is 𝜎 𝑖 also a 12-cycle?

𝑖 = 5, 7, 11 (manually checked up to 12)

(b) Let 𝜏 be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers 𝑖 is 𝜏𝑖 also an 8-cycle?

𝑖 = 3, 5, 7 (manually checked up to 8)

(c) Let 𝜔 be the 14-cycle (1 2 3 4 5 6 7 8 9 10 11 12 13 14). For which positive integers 𝑖 is 𝜔𝑖 also a 14-cycle?

𝑖 = 3, 5, 11, 13 (manually checked up to 14)

10. Prove that if 𝜎 is the 𝑚-cycle (𝑎1𝑎2 … 𝑎𝑚), then for all 𝑖 ∈ {1, 2, … , 𝑚}, 𝜎 𝑖(𝑎𝑘) = 𝑎𝑘+𝑖, where 𝑘 +𝑖 is replaced
by its least residue mod 𝑚 when 𝑘 + 𝑖 > 𝑚. Deduce that |𝜎| = 𝑚.

Proof.
base case: For 𝑖 = 1 we have 𝜎 = 𝜎1 andwe can see for all 𝑎𝑘 ∈ 𝜎1 we have that 𝜎(𝑎𝑘) = 𝑎𝑘+1 since 𝑎𝑘 ↦ 𝑎𝑘+1.



induction hypothesis: For 1 ≤ 𝑖 ≤ 𝑚 − 1 suppose that 𝜎 𝑖(𝑎𝑘) = 𝑎𝑘+𝑖.

induction step: For 𝑖 = 𝑚 we have,

𝜎𝑚 = 𝜎𝑚−1𝜎
= 𝜎𝑚−1(𝜎(𝑎𝑘))
= 𝜎𝑚−1(𝑎𝑘+1)
= 𝑎(𝑘+1)+(𝑚−1)
= 𝑎𝑘+𝑚

Thus, 𝜎𝑚(𝑎𝑘) = 𝑎𝑘+𝑚.

Therefore, if 𝑖 ∈ {1, 2, … , 𝑚}, 𝜎 𝑖(𝑎𝑘) = 𝑎𝑘+𝑖, where 𝑘 + 𝑖 is replaced by its least residue mod 𝑚 when 𝑘 + 𝑖 >
𝑚.

Additionally, it is easy to see that since we are mod 𝑚 that for 𝜎𝑚 that 𝑎𝑘 ↦ 𝑎𝑘+𝑚 = 𝑎𝑘, therefore |𝜎| = 𝑚.

11. Let 𝜎 be the 𝑚-cycle (1 2 … m). Show that 𝜎 𝑖 is also an 𝑚-cycle if and only if 𝑖 is relatively prime to 𝑚.

Proof. In an 𝑚-cycle we know that the last element must point back to the first element in the cycle, which
for an 𝑚-cycle must be 1. Thus the last element must be congruent to 1 (mod 𝑚).

Suppose that 𝜎 𝑖 is an 𝑚-cycle. We know that in general 𝜎 𝑖(𝑎𝑘) = 𝑎𝑘+𝑖 [Exercise 10] so that 𝜎 𝑖 ∶ 𝑘 ↦ 𝑘 + 𝑖 ↦
𝑘 + 2𝑖 ⋯ 𝑘 + (𝑚 − 1)𝑖. Additionally, since 𝜎 𝑖 is an 𝑚-cycle each 𝑘 + 𝑥𝑖 must be unique so that 𝑘 + 𝑥𝑖 ≢ 𝑘 + 𝑖𝑦 for
unique 𝑥, 𝑦 ∈ {0, 1, … , 𝑚 − 1}. This implies that (𝑥 − 𝑦)𝑖 ≢ 0 (mod 𝑚) ⟹ (𝑥 − 𝑦)𝑖 ∤ 𝑚𝑛 ⟹ 𝑚𝑛 ∤ (𝑥 − 𝑦)𝑖.
Therefore, 𝑚 and 𝑖 do not have any common divisors and therefore they must be relatively prime.

Conversely, working backwards, if 𝑚 and 𝑖 are relatively prime then they do not have any common divisors
so that (𝑥 − 𝑦)𝑖 ≢ 0 (mod 𝑚) ⟹ 𝑘 + 𝑥𝑖 ≢ 𝑘 + 𝑦𝑖 for unique 𝑥, 𝑦 ∈ {0, 1, … , 𝑚 − 1}. Thus, each 𝑘 + 𝑥𝑖 must
be unique and we know that in general 𝜎 𝑖(𝑎𝑘) = 𝑎𝑘+𝑖 [Exercise 10]. Thus, since all the elements 𝑘 + 𝑥𝑖 are
unique modulo 𝑚 we can see that we have 𝜎 𝑖 ∶ 𝑘 ↦ 𝑘 + 𝑖 ↦ 𝑘 + 2𝑖 ⋯ 𝑘 + (𝑚 − 1)𝑖, which is an 𝑚-cycle.

12.

(a) If 𝜏 =(1 2)(3 4)(5 6)(7 8)(9 10) determine whether there is a 𝑛-cycle 𝜎 (𝑛 ≥ 10) with 𝜏 = 𝜎𝑘 for some
integer 𝑘.

Proof. We know that we can only get another 𝑛-cycle if 𝑛 and 𝑖 are relatively prime [Exercise 10]. How-
ever, in this situation we actually want them not to be relatively prime as we want it to equal 𝜏.

If we take the 𝑛-cycle for 𝑛 = 10 with 𝜎 =(1 2 3 4 5 6 7 8 9 10), we see that if 𝑖 = 5 then they are not
relatively prime as 5 is a divisor of 10 andwe get 𝜎5 =(1 6)(2 7)(3 8)(4 9)(5 10). Now, we can swap the
positions of the numbers to see what 𝜎 would need to be in order to make it so 𝜎5 = 𝜏. For example, 2
needs to be in the position of 6, 6 needs to be in the position of 8, 3 needs to be in the position of 2, and
so on:

𝜎 = (1 ⋯ ⋅ 2 ⋅ 6 ⋅ ⋅)
𝜎 = (1 3 ⋯ 2 ⋅ 6 ⋅ ⋅)

…
𝜎 = (1 3 5 7 9 2 4 6 8 10)

𝜎5 = ( 2)(3 4)(5 6)( 8)(9 10) = 𝜏



(b) If 𝜏 =(1 2)(3 4 5) determine whether there is an 𝑛-cycle 𝜎(𝑛 ≥ 5) with 𝜏 = 𝜎𝑘 for some integer 𝑘.

Proof. Suppose we have an 𝑛-cycle 𝜎 = (𝑎1 𝑎2 ⋯ 𝑎𝑛) such that 𝜎𝑘 = 𝜏 for some integer 𝑘. Every 𝑎𝑖 in
an 𝑛-cycle is unique and for some 𝑖 we must have 𝑎𝑖 = 3. Then, using the fact that for an 𝑛-cycle that
𝑠𝑖𝑔𝑚𝑎𝑘(𝑎𝑖) = 𝑎𝑖+𝑘 we see that:

𝜏(3) = 𝜎𝑘(3) = 𝜎𝑘(𝑎𝑖) = 𝑎𝑖+𝑘 = 4
𝜏(4) = 𝜎𝑘(4) = 𝜎𝑘(𝑎𝑖+𝑘) = 𝑎𝑖+2𝑘 = 5
𝜏(5) = 𝜎𝑘(5) = 𝜎𝑘(𝑎𝑖+2𝑘) = 𝑎𝑖+3𝑘 = 3

Which, means that 𝑎𝑖 = 𝑎𝑖+3𝑘 ⟹ 𝜎3𝑘 = 1 (where 1 is the identity cycle decomposition). Thus, if we
take the cycle element 𝑎𝑖 = 2 we see that 2 = 𝜎3𝑘(2) = (𝜎𝑘)3(2) = 𝜏3(2) = 1, which is a contradiction.
Therefore, no 𝑛-cycle 𝜎 exists such that 𝜎𝑘 = 𝜏 for some integer 𝑘.

13. Show that an element has order 2 in 𝑆𝑛 if and only if its cycle decomposition is a product of commuting
2-cycles.

Proof. Let 𝜏 be an element in 𝑆𝑛 with order 2. For an arbitrary 𝑚-cycle we know that 𝜎𝑘(𝑎𝑖) = 𝑎𝑖+𝑘 and for
𝜏 we know that all of its cycles will have 𝜎2

𝑖 (𝑎𝑖) = 𝑎𝑖+2 = 𝑎𝑖 since 𝜏2 = 1. Therefore, all its cycles will be
2-cycles (up to identity). Additionally, 𝑎𝑖 and 𝑎𝑖+1 only belong to one cycle because if 𝑎𝑖+1↦̸𝑎𝑖 we would not
have 𝜎2

𝑖 (𝑎𝑖) = 𝑎𝑖+2 = 𝑎𝑖. Therefore, the cycle decomposition of 𝜏 must be a product of commuting 2-cycles
(up to identity).

Conversely, if a cycle decomposition is a product of commuting 2-cycles then we know that 𝑎𝑖 ↦ 𝑎𝑖+1 ↦ 𝑎𝑖
so that for all 𝑎𝑖 we have 𝑎𝑖+2 = 𝑎𝑖 so that the order of this cycle decomposition is 2.

14. Let 𝑝 be a prime. Show that an element has order 𝑝 in 𝑆𝑛 if and only if its cycle decomposition is a product
of commuting 𝑝-cycles. Show by an explicit example that this need not be the case if 𝑝 is not prime.

Proof. Let 𝜏 be an element of order 𝑝 in 𝑆𝑛. Each element of 𝑆𝑛 has 𝑛 elements (these are not always explicitly
written with cycle notation but they are still there nonetheless). Since 𝑝 ≤ 𝑛, if 𝑝 = 𝑛 then the element 𝜏
would need to be a 𝑝-cycle because |𝜏| = 𝑝 ⟹ 𝜏𝑝(𝑎𝑖) = 𝑎𝑖. If 𝑝 < 𝑛, then 𝑝 must a multiple of 𝑛 so that
𝑝𝑘 = 𝑛 for some integer 𝑘. Like before, |𝜏| = 𝑝 ⟹ 𝜏𝑝(𝑎𝑖) = 𝑎𝑖 for all 𝑎𝑖 ∈ 𝜏, which implies that we have 𝑘
𝑝-cycles that are disjoint and can commute with one another.

Conversely, if the cycle decomposition of 𝜏 (we don’t yet know its order at this point) is a product of com-
muting 𝑝-cycles then we know that 𝑝𝑘 = 𝑛 for some integer 𝑘 since each element of 𝑆𝑛 has 𝑛 elements.
Since we have 𝑘 disjoint 𝑝-cycles, and it is know that 𝜎𝑘(𝑎𝑖) = 𝑎𝑖+𝑘 for an arbitrary 𝑚-cycle, we know that
𝜏𝑝(𝑎𝑖) = 𝑎𝑖. Therefore, |𝜏| = 𝑝.

Example when 𝑝 is not prime:

The element (1 2)(3 4 5) from 𝑆5 has order 6 and obviously it is not a product of commuting 6-cycles.

15. Prove that the order of an element in 𝑆𝑛 equals the least common multiple of the lengths of the cycles in
its cycle decomposition. [Use Exercise 10 and Exercise 24 of Section 1.]

Proof. Let 𝜏 ∈ 𝑆𝑛. To find the order of 𝜏 we need 𝜏𝑡 = 1 for some integer 𝑡. In order for this to happen all
of the cycles in 𝜏 must have the condition that 𝑎𝑖+𝑡 = 𝑎𝑖 for a cycle of length 𝑘 and where 𝑡 = 𝑛𝑘. That is, 𝑡
must be a multiple of the length of each of the cycles of 𝜏. From , We know that an arbitrary 𝑚-cycle 𝜎 has
the property 𝜎𝑘(𝑎𝑖) = 𝑎𝑖+𝑘 [Exercise 10] and that 𝑎𝑖+𝑘 = 𝑎𝑖 if the 𝑚-cycle is of length 𝑘, i.e., that 𝑚 = 𝑘. All of
the cycles of 𝜏 might not have the same length so in order to have the condition that 𝑎𝑖+𝑡 = 𝑎𝑖 take 𝑡 to be the



least common multiple of the lengths of the cycles of 𝜏. Then 𝜏𝑡 = (𝜎1𝜎2 ⋅ ⋅ ⋅ 𝜎𝑚)𝑡 = 𝜎 𝑡
1𝜎 𝑡

2 ⋅ ⋅ ⋅ 𝜎 𝑡
𝑚 and since

𝑡 is a multiple of length of each 𝜎𝑖 our condition 𝑎𝑖+𝑡 = 𝑎𝑖 will be met and therefore the order of an element
in 𝑆𝑛 is equal to the least common multiple of the length of the cycles in its cycle decomposition.

16. Show that if 𝑛 ≥ 𝑚 then the number of 𝑚-cycles in 𝑆𝑛 is given by
𝑛(𝑛 − 1)(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑚 + 1)

𝑚
[Count the number ofways of forming an𝑚-cycle anddivide by the number of representations of a particular
𝑚-cycle.]

Proof. The number of ways of choosing 𝑚 items from 𝑛 items can be found using the multiplicative formula

for the binomial coefficient (𝑛
𝑚) = 𝑛𝑚

𝑚! = 𝑛(𝑛 − 1)(𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑚 + 1)
𝑚(𝑚 − 1)(𝑚 − 2) ⋅ ⋅ ⋅ 1 . The numerator gives the number

of ways to select a sequence of 𝑚 distinct objects, retaining the order of selection, from a set of 𝑛 objects. The
denominator counts the number of distinct sequences that define the same 𝑚-combination when order is
disregarded. Since we don’t want to disregard order, as the cycles in a cycle decomposition are dependent
on order but not cyclical permutation of the numbers in the cycle themselves, we only want to divide by 𝑚
here and not 𝑚!. This then gives us:

𝑛(𝑛 − 1)(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑚 + 1)
𝑚

as intended.

17. Show that if 𝑛 ≥ 4 then the number of permutations in 𝑆𝑛 which are the product of two disjoint 2-cycles
is 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)/8.

Proof. Suppose that 𝑛 ≥ 4 and consider the product of two 2-cycles:

(𝑎1 𝑎2)(𝑎3 𝑎4)

In succession, there are 𝑛 ways to choose 𝑎1, 𝑛 − 1 ways to choose 𝑎2, 𝑛 − 3 ways to choose 𝑎3 and 𝑛 − 3 ways
to choose 𝑎4 such that there are:

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
such choices. However, since the cycle (𝑎1 𝑎2) = (𝑎2 𝑎1), we see that we have counted twice so we should
divide by 2. The same logic applies for (𝑎3 𝑎4).

We aren’t done yet. Additionally, the order of the cycles themselves doesn’t matter as they are disjoint and
can commute. That is, (𝑎1 𝑎2)(𝑎3 𝑎4) = (𝑎3 𝑎4)(𝑎1 𝑎2), so we should divide by 2 once again.

Therefore we have 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)/8.

18. Find all the numbers 𝑛 such that 𝑆5 contains an element of order 𝑛. [Use Exercise 15.]

It is easy to see that 𝑆5 will have elements with orders 1, 2, 3, 4, and 5. However, since 𝑆5 can also have a cycle
decomposition of a 2-cycle and 3-cycle, we know that 𝑆5 will also contain elements with order 6 [Exercise
15]. Therefore, 𝑆5 contains elements with order 1, 2, 3, 4, 5, and 6.

19. Find all the numbers 𝑛 such that 𝑆7 contains an element of order 𝑛. [Use Exercise 15.]

In addition to the orders of the numbers 1 through 7 we can also get combinations of 3-cycle with a 4-cycle
as well as combinations of 2-cycle with a 5-cycle [Exercise 18]. Therefore, 𝑆7 contains elements with order
1, 2, 3, 4, 5, 6, 7, 10, and 12.



20. Find a set of generators and relations for 𝑆3.

The elements of 𝑆3 have the cycle decompositions: 1, (1 2), (1 3), (2 3), (1 2 3), and (1 3 2) [Exercise 4].

All of the 2-cycles have order 2 and all of the 3-cycles have order 3 so that we have the relations:

𝑟3 = 𝑠2 = 1, where we have used 𝑟 for a 3-cycle and 𝑠 for a 2-cycle. If it already isn’t apparent, 𝑆3 is isomorphic
to the dihedral group of order 6 𝐷6.

As such we also have the additional relation 𝑟𝑠 = 𝑠𝑟−1.

Therefore, for the set of generators and relations for 𝑆3 we have the same presentation as the dihedral group
of order 6:

⟨𝑟, 𝑠 ∣ 𝑟3 = 𝑠2 = 1, 𝑟𝑠 = 𝑠𝑟−1⟩

1.4 GROUPS

Let 𝐹 be a field and let 𝑛 ∈ ℤ+.

1. Prove that |𝐺𝐿2(𝔽2)| = 6.

Proof. Since 𝑞 = |𝔽2| = 2 and 𝑛 = 2 we see that |𝐺𝐿2(𝔽2)| = (22 − 1)(22 − 21) = 6.

2. Write out all the elements of 𝐺𝐿2(𝔽2) and compute the order of each element.

The elements of 𝐺𝐿2(𝔽2) are the 2 × 2 invertible matrices over the field 𝔽2 which are the integers modulo 2.
Therefore, the entries in the matrices are either 0 or 1.

[(1 0
0 1) , (0 1

1 0) , (1 1
0 1) , (1 0

1 1) , (1 1
1 0) , (0 1

1 1)]

∣(1 0
0 1)∣ = 1, since this is the identity matrix.

∣(0 1
1 0)∣ = 2 [(0 1

1 0) (0 1
1 0) = (1 0

0 1)]

∣(1 1
0 1)∣ = 2 [(1 1

0 1) (1 1
0 1) = (1 0

0 1)]

∣(1 0
1 1)∣ = 2 [(1 0

1 1) (1 0
1 1) = (1 0

0 1)]

∣(1 1
1 0)∣ = 3 [(1 1

1 0) (1 1
1 0) (1 1

1 0) = (1 0
0 1)]

∣(0 1
1 1)∣ = 3 [(0 1

1 1) (0 1
1 1) (0 1

1 1) = (1 0
0 1)]

3. Show that 𝐺𝐿2(𝔽2) is non-abelian.

Proof.

Let 𝐴 = (1 1
1 0) and 𝐵 = (1 0

1 1) 𝐴𝐵 = (0 1
1 0) while 𝐵𝐴 = (1 1

0 1)

Therefore, 𝐺𝐿2(𝔽2) is non-abelian.



4. Show that if 𝑛 is not prime then ℤ/𝑛ℤ is not a field.

contrapositive. Suppose ℤ/𝑛ℤ is a field. Then for all 𝑎 such that 0 < 𝑎 < 𝑛 there exists a 𝑏 such that 𝑎𝑏 = 1.
Thus, 𝑎𝑏 + 𝑘𝑛 = 1. Therefore gcd(𝑎, 𝑛) = 1 for 0 < 𝑎 < 𝑛 ⟹ 𝑛 is prime.

5. Show that 𝐺𝐿2(𝐹) is a finite group if and only if 𝐹 has a finite number of elements.

Proof. Suppose that 𝐺𝐿2(𝐹) is a finite group. Therefore, 𝐺𝐿2(𝐹) must have a finite number of elements. The
only way this can happen is if the field 𝐹 is finite as the entries of the matrices are over these elements and
in the case of an infinite field 𝐹 we would have infinite elements in 𝐺𝐿2(𝐹).

Conversely, if 𝐹 has a finite number of elements then since 𝐺𝐿2(𝐹) is composed of matrices using these
elements there must be a finite number of matrices constructed using these entries.

6. If |𝐹| = 𝑞 is finite prove that |𝐺𝐿𝑛(𝐹)| < 𝑞𝑛2 .

Proof. For an 𝑛 × 𝑛 matrix, each of its entries can be 𝑞 different possibilities giving a total of 𝑞𝑛2 possibilities.
However, we know that for the general linear group that some of these entries will lead to a matrix that isn’t
invertible and therefore would not be counted. Therefore, |𝐺𝐿𝑛(𝐹)| < 𝑞𝑛2 .

7. Let 𝑝 be a prime. Prove that the order of 𝐺𝐿2(𝔽𝑝) is 𝑝4 −𝑝3 −𝑝2 +𝑝 (do not just quote the order formula in
this section). [Subtract the number of 2 × 2 matrices which are not invertible from the total number of 2 × 2
matrices over 𝔽𝑝. You may use the fact that a 2 × 2 matrix is not invertible if and only if one row is a multiple
of the other.]

Proof. Since |𝔽𝑝| = 𝑝 and 𝑛 = 2 we see that a matrix in 𝐺𝐿2(𝔽𝑝) can have 𝑝4 variants [Exercise 6 had 𝑞𝑛2

possibilities before subtracting]. Now, we need to subtract the amount of matrices that are not invertible.

A 2 × 2 matrix (𝑎 𝑏
𝑐 𝑑) will not be invertible if 𝑎𝑑 − 𝑏𝑐 = 0 ⟹ 𝑎𝑑 = 𝑏𝑐 Looking at 𝑎𝑑 first we see that

𝑎𝑑 = 𝑏𝑐 ⟹ 𝑎𝑑 = 𝑘 for some 𝑘 ∈ 𝔽𝑝.

If 𝑘 = 0, then there are 𝑝 choices each for 𝑎 and 𝑝 but we only need one of the cases when either 𝑎 or 𝑏 are zero
so we subtract 1. That is, there are (2𝑝 − 1) choices for 𝑎𝑑 = 0. From the same reasoning, we have (2𝑝 − 1)
choices for 𝑏𝑐 = 0. When 𝑘 ≠ 0 there are (𝑝 − 1) choices of 𝑎 and 𝑑 that add up to 𝑘. With the same reasoning
for 𝑏𝑐 = 𝑘 we have another (𝑝 − 1) choices. Lastly, we need to take into account that for 𝑘 itself, there are
(𝑝 − 1) choices.

Therefore, all together we have

(2𝑝 − 1)2 + (𝑝 − 1)3 = 4𝑝2 − 4𝑝 + 1 + 𝑝3 − 3𝑝2 + 3𝑝 − 1 = 𝑝3 + 𝑝2 − 𝑝

non-invertible matrices. Subtracting this from the 𝑝4 variants that we calculated before gives the desired
formula 𝑝4 − 𝑝3 − 𝑝2 + 𝑝.

8. Show that 𝐺𝐿𝑛(𝐹) is non-abelian for any 𝑛 ≥ 2 and any 𝐹.

Proof. Let 𝐴 = (𝑎1 𝑏1
𝑐1 𝑑1

) and 𝐵 = (𝑎2 𝑏2
𝑐2 𝑑2

).

Then, 𝐴𝐵 = ([𝑎1𝑎2 + 𝑏1𝑐2] [𝑎1𝑏2 + 𝑏1𝑑2]
[𝑐1𝑎2 + 𝑑1𝑐2] [𝑐1𝑏2 + 𝑑1𝑑2]) and 𝐵𝐴 = ([𝑎2𝑎1 + 𝑏2𝑐1] [𝑎2𝑏1 + 𝑏2𝑑1]

[𝑐2𝑎1 + 𝑑2𝑐1] [𝑐2𝑏1 + 𝑑2𝑑1]).



Looking at the top left corner entry in 𝐴𝐵 and 𝐵𝐴 we see that [𝑎1𝑎2 + 𝑏1𝑐2] ≠ [𝑎2𝑎1 + 𝑏2𝑐1] if 𝑏1𝑐2 ≠ 𝑏2𝑐1. As
there can obviously be matrices where this condition exists, and that even in the event that 𝑛 > 2 we could
still have the condition 𝑏1𝑐2 ≠ 𝑏2𝑐1 in the sum of the entry under investigation. Additionally, as 0 and 1 are
elements of any field, we see that this condition can exist with simply having 𝑏1𝑐2 = 1 and 𝑏2𝑐1 = 0 so that
𝐺𝐿𝑛(𝐹) is non-abelian for any 𝑛 ≥ 2 and any 𝐹.

9. Prove that the binary operation of matrix multiplication of 2 × 2 matrices with real number entries is
associative.

Proof. Let 𝐴 = (𝑎1 𝑏1
𝑐1 𝑑1

) and 𝐵 = (𝑎2 𝑏2
𝑐2 𝑑2

) and 𝐶 = (𝑎3 𝑏3
𝑐3 𝑑3

).

Then, 𝐴𝐵 = ([𝑎1𝑎2 + 𝑏1𝑐2] [𝑎1𝑏2 + 𝑏1𝑑2]
[𝑐1𝑎2 + 𝑑1𝑐2] [𝑐1𝑏2 + 𝑑1𝑑2]) and 𝐵𝐶 = ([𝑎2𝑎3 + 𝑏2𝑐3] [𝑎2𝑏3 + 𝑏2𝑑3]

[𝑐2𝑎3 + 𝑑2𝑐3] [𝑐2𝑏3 + 𝑑2𝑑3]).

𝐴(𝐵𝐶) = ([𝑎1(𝑎2𝑎3 + 𝑏2𝑐3) + 𝑏1(𝑐2𝑎3 + 𝑑2𝑐3)] [𝑎1(𝑎2𝑏3 + 𝑏2𝑑3) + 𝑏1(𝑐2𝑏3 + 𝑑2𝑑3)]
[𝑐1(𝑎2𝑎3 + 𝑏2𝑐3) + 𝑑1(𝑐2𝑎3 + 𝑑2𝑐3)] [𝑐1(𝑎2𝑏3 + 𝑏2𝑑3) + 𝑑1(𝑐2𝑏3 + 𝑑2𝑑3)])

𝐴(𝐵𝐶) = ([𝑎1𝑎2𝑎3 + 𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑎3 + 𝑏1𝑑2𝑐3] [𝑎1𝑎2𝑏3 + 𝑎1𝑏2𝑑3 + 𝑏1𝑐2𝑏3 + 𝑏1𝑑2𝑑3]
[𝑐1𝑎2𝑎3 + 𝑐1𝑏2𝑐3 + 𝑑1𝑐2𝑎3 + 𝑑1𝑑2𝑐3] [𝑐1𝑎2𝑏3 + 𝑐1𝑏2𝑑3 + 𝑑1𝑐2𝑏3 + 𝑑1𝑑2𝑑3])

(𝐴𝐵)𝐶 = ([(𝑎1𝑎2 + 𝑏1𝑐2)𝑎3 + (𝑎1𝑏2 + 𝑏1𝑑2)𝑐3] [(𝑎1𝑎2 + 𝑏1𝑐2)𝑏3 + (𝑎1𝑏2 + 𝑏1𝑑2)𝑑3]
[(𝑐1𝑎2 + 𝑑1𝑐2)𝑎3 + (𝑐1𝑏2 + 𝑑1𝑑2)𝑐3] [(𝑐1𝑎2 + 𝑑1𝑐2)𝑏3 + (𝑐1𝑏2 + 𝑑1𝑑2)𝑑3])

(𝐴𝐵)𝐶 = ([𝑎1𝑎2𝑎3 + 𝑏1𝑐2𝑎3 + 𝑎1𝑏2𝑐3 + 𝑏1𝑑2𝑐3] [𝑎1𝑎2𝑏3 + 𝑏1𝑐2𝑏3 + 𝑎1𝑏2𝑑3 + 𝑏1𝑑2𝑑3]
[𝑐1𝑎2𝑎3 + 𝑑1𝑐2𝑎3 + 𝑐1𝑏2𝑐3 + 𝑑1𝑑2𝑐3] [𝑐1𝑎2𝑏3 + 𝑑1𝑐2𝑏3 + 𝑐1𝑏2𝑑3 + 𝑑1𝑑2𝑑3])

Therefore, (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).

10. Let 𝐺 = {(𝑎 𝑏
0 𝑐) ∣ 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 ≠ 0, 𝑐 ≠ 0}.

(a) Compute the product of (𝑎1 𝑏1
0 𝑐1

) and (𝑎2 𝑏2
0 𝑐2

) to show that 𝐺 is closed under matrix multiplication.

Proof.

(𝑎1 𝑏1
0 𝑐1

) (𝑎2 𝑏2
0 𝑐2

) = (𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑐2
0 𝑐1𝑐2

)

Since both 𝑎1 ≠ 0 and 𝑎2 ≠ 0 ⟹ 𝑎1𝑎2 ≠ 0. Same goes for 𝑐1 ≠ 0 and 𝑐2 ≠ 0 ⟹ 𝑐1𝑐2 ≠ 0. It is also
easy to see that 𝑎1𝑏2 + 𝑏1𝑐2 ∈ ℝ as ℝ is a field (so closed under addition and multiplication).

(b) Find the matrix inverse of (𝑎 𝑏
0 𝑐) and deduct that 𝐺 is closed under inverses.

Proof.

𝐴−1 = 1
𝑎𝑐 (𝑐 −𝑏

0 𝑎 )

det(𝐴) = 1
𝑎𝑐 is nonzero so 𝐴 is invertible. 𝑎 and 𝑐 swapped places and are both nonzero. −𝑏 is obviously

in ℝ. Therefore, 𝐴−1 ∈ 𝐺 and 𝐺 is closed under inverses.

(c) Deduce that 𝐺 is a subgroup of 𝐺𝐿2(ℝ) [Exercise 26, Section 1].



Proof. Since 𝐺 is closed under multiplication and inverses by parts (a) and (b) we now need to show
that it is associative and contains the identity element.

associative: Let𝐴 = (𝑎1 𝑏1
0 𝑐1

) and𝐵 = (𝑎2 𝑏2
0 𝑐2

). Frompart (a)we saw that𝐴𝐵 = (𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑐2
0 𝑐1𝑐2

).

Let 𝐶 = (𝑎3 𝑏3
0 𝑐3

), then

(𝐴𝐵)𝐶 = (𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑐2
0 𝑐1𝑐2

) (𝑎3 𝑏3
0 𝑐3

) = (𝑎1𝑎2𝑎3 𝑎1𝑎2𝑏3 + 𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑐3
0 𝑐1𝑐2𝑐3

)

𝐵𝐶 = (𝑎2 𝑏2
0 𝑐2

) (𝑎3 𝑏3
0 𝑐3

) = (𝑎2𝑎3 𝑎2𝑏3 + 𝑏2𝑐3
0 𝑐2𝑐3

)

𝐴(𝐵𝐶) = (𝑎1 𝑏1
0 𝑐1

) (𝑎2𝑎3 𝑎2𝑏3 + 𝑏2𝑐3
0 𝑐2𝑐3

) = (𝑎1𝑎2𝑎3 𝑎1𝑎2𝑏3 + 𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑐3
0 𝑐1𝑐2𝑐3

)

Therefore, 𝐺 is associative.

identity: By part (b) we see that 𝐺 has inverses and therefore we have that 𝐴−1𝐴 = 𝐼.

As an example,

𝐴−1𝐴 = 1
𝑎𝑐 (𝑐 −𝑏

0 𝑎 ) (𝑎 𝑏
0 𝑐) = (1 0

0 1)

Therefore, 𝐺 is a subgroup of 𝐺𝐿2(ℝ).

(d) Prove that the set of elements of 𝐺 whose two diagonal entries are equal (i.e., 𝑎 = 𝑐) is also a subgroup
of 𝐺𝐿2(ℝ).

Proof. Since 𝐺 is closed under multiplication and inverses by parts (a) and (b) we now need to show
that it is associative and contains the identity element.

associative: from part (c) if we set 𝑐1 ↦ 𝑎1, 𝑐2 ↦ 𝑎2, 𝑐3 ↦ 𝑎3 then 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶.

identity: from part (c) if we set 𝑐 ↦ 𝑎, we still see that 𝐴−1𝐴 = 𝐼.

Therefore, the set of elements of 𝐺 whose two diagonal entries are equal (i.e., 𝑎 = 𝑐) is also a subgroup
of 𝐺𝐿2(ℝ).

The next exercise introduces the Heisenberg group over the field 𝐹 and develops some of its basic properties.
When 𝐹 = ℝ this group plays an important role in quantum mechanics and signal theory by giving a
group theoretic interpretation (due to H. Weyl) of Heisenberg’s Uncertainty Principle. Note also that the
Heisenberg group may be defined more generally — for example, with entries in ℤ.

11. Let 𝐻(𝐹) =
⎧{
⎨{⎩

⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

∣ 𝑎, 𝑏, 𝑐 ∈ 𝐹
⎫}
⎬}⎭

— called the Heisenberg group over 𝐹. Let 𝑋 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

and

𝑌 = ⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

be elements of 𝐻(𝐹).

(a) Compute the matrix product 𝑋𝑌 and deduce that 𝐻(𝐹) is closed under matrix multiplication. Exhibit
explicit matrices such that 𝑋𝑌 ≠ 𝑌𝑋 (so that 𝐻(𝐹) is always non-abelian).



Proof.

𝑋𝑌 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 𝑑 + 𝑎 𝑒 + 𝑎𝑓 + 𝑏
0 1 𝑐 + 𝑓
0 0 1

⎞⎟⎟⎟
⎠

This shows us that 𝐻(𝐹) is closed under matrix multiplication. However, had we had the matrices in
reverse order we would have had the product 𝑑𝑐 as part of the sum for the top right entry of the matrix
instead of the product 𝑎𝑓 as we see here. Therefore, as an example, any matrix with 𝑎𝑓 ≠ 𝑑𝑐 will not
commute.

Let 𝐴 = ⎛⎜⎜⎜
⎝

1 5 6
0 1 2
0 0 1

⎞⎟⎟⎟
⎠

and 𝐵 = ⎛⎜⎜⎜
⎝

1 3 7
0 1 4
0 0 1

⎞⎟⎟⎟
⎠
. Then,

𝐴𝐵 = ⎛⎜⎜⎜
⎝

1 5 6
0 1 2
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 3 7
0 1 4
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 8 33
0 1 6
0 0 1

⎞⎟⎟⎟
⎠

𝐵𝐴 = ⎛⎜⎜⎜
⎝

1 3 7
0 1 4
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 5 6
0 1 2
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 8 19
0 1 6
0 0 1

⎞⎟⎟⎟
⎠

(b) Find an explicit formula for the matrix inverse 𝑋−1 and deduce that 𝐻(𝐹) is closed under inverses.

Proof. Let 𝑋 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠
. Then 𝑋−1 = ⎛⎜⎜⎜

⎝

1 −𝑎 𝑎𝑐 − 𝑏
0 1 −𝑐
0 0 1

⎞⎟⎟⎟
⎠
, and

𝑋𝑋−1 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 −𝑎 𝑎𝑐 − 𝑏
0 1 −𝑐
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

Therefore, 𝐻(𝐹) is closed under inverses.

(c) Prove the associative law for 𝐻(𝐹) and deduce that 𝐻(𝐹) is a group of order |𝐹|3. (Do not assume that
matrix multiplication is associative).

Proof. Let 𝑋 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

and 𝑌 = ⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

and 𝑍 = ⎛⎜⎜⎜
⎝

1 𝑔 ℎ
0 1 𝑖
0 0 1

⎞⎟⎟⎟
⎠
. Then,

𝑋𝑌 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 𝑑 + 𝑎 𝑒 + 𝑎𝑓 + 𝑏
0 1 𝑐 + 𝑓
0 0 1

⎞⎟⎟⎟
⎠

𝑌𝑍 = ⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑔 ℎ
0 1 𝑖
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 𝑔 + 𝑑 ℎ + 𝑑𝑖 + 𝑒
0 1 𝑓 + 𝑖
0 0 1

⎞⎟⎟⎟
⎠

(𝑋𝑌)𝑍 = ⎛⎜⎜⎜
⎝

1 𝑑 + 𝑎 𝑒 + 𝑎𝑓 + 𝑏
0 1 𝑐 + 𝑓
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑔 ℎ
0 1 𝑖
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 𝑔 + 𝑑 + 𝑎 ℎ + 𝑑𝑖 + 𝑎𝑖 + 𝑒 + 𝑎𝑓 + 𝑏
0 1 𝑖 + 𝑐 + 𝑓
0 0 1

⎞⎟⎟⎟
⎠

𝑋(𝑌𝑍) = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑔 + 𝑑 ℎ + 𝑑𝑖 + 𝑒
0 1 𝑓 + 𝑖
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 𝑔 + 𝑑 + 𝑎 ℎ + 𝑑𝑖 + 𝑎𝑖 + 𝑒 + 𝑎𝑓 + 𝑏
0 1 𝑖 + 𝑐 + 𝑓
0 0 1

⎞⎟⎟⎟
⎠



Since only the 3 positions in the top triangle of the matrix change (𝑎, 𝑏, 𝑐 in the definition), we see that
the order of the group is |𝐹|3 since there are |𝐹| choices for each.

(d) Find the order of each element of the finite group 𝐻(ℤ/2ℤ). The elements of the finite group 𝐻(ℤ/2ℤ)
are

⎡⎢⎢
⎣

⎛⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 1
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 1
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 0 1
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 0 1
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 0
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 0 0
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

⎤⎥⎥
⎦

and their orders are

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 1

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 1 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 2

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 1 1
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 2

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 1 1
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 4

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 0 1
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 2

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 0 1
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 2

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 1 0
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 4

∣∣∣∣∣

⎛⎜⎜⎜
⎝

1 0 0
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

∣∣∣∣∣
= 2

(e) Prove that every non-identity element of the group 𝐻(ℝ) has infinite order.

Proof.
⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 2𝑎 2𝑏 + 𝑎𝑐
0 1 2𝑐
0 0 1

⎞⎟⎟⎟
⎠

As we can see, the order will be infinite as the three entries in the top right corner will grow without
bound when 𝑎, 𝑏, 𝑐 ∈ ℝ.

Therefore, every non-identity element of the group 𝐻(ℝ) has infinite order.

1.5 THE QUATERNION GROUP



1. Compute the order of each of the elements in 𝑄8.

𝑄8 = {1, −1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘}

Since 𝑖 ⋅ 𝑖 = −1 and (−1)(−1) = 1 we see that:

|1| = 1, | − 1| = 2, |𝑖| = 4, | − 𝑖| = 4, |𝑗| = 4, | − 𝑗| = 4, |𝑘| = 4, | − 𝑘| = 4

2. Write out the group tables for 𝑆3, 𝐷8 and 𝑄8.

𝑆3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∗ 1 (1 2) (2 3) (1 3) (1 2 3) (1 2)
1 1 (1 2) (2 3) (1 3) (1 2 3) (1 3 2)

(1 2) (1 2) 1 (1 2 3) (1 3 2) (2 3) (1 3)
(2 3) (2 3) (1 3 2 1 (1 2 3) (1 3) (1 2)
(1 3) (1 3) (1 2 3) (1 3 2) 1 (1 2) (2 3)

(1 2 3) (1 2 3) (1 3) (1 2) (2 3) (1 3 2) 1
(1 3 2) (1 3 2) (2 3) (1 3) (1 2) 1 (1 2 3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

𝐷8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∗ 1 𝑟 𝑟2 𝑟3 𝑠 𝑠𝑟 𝑠𝑟2 𝑠𝑟3

1 1 𝑟 𝑟2 𝑟3 𝑠 𝑠𝑟 𝑠𝑟2 𝑠𝑟3

𝑟 𝑟 𝑟2 𝑟3 1 𝑠𝑟 𝑠𝑟2 𝑠𝑟3 𝑠
𝑟2 𝑟2 𝑟3 1 𝑠𝑟 𝑠𝑟2 𝑠𝑟3 𝑠 𝑠𝑟
𝑟3 𝑟3 1 𝑟 𝑟2 𝑠𝑟3 𝑠 𝑠𝑟 𝑠𝑟2

𝑠 𝑠 𝑠𝑟 𝑠𝑟2 𝑠𝑟3 1 𝑟 𝑟2 𝑟3

𝑠𝑟 𝑠𝑟 𝑠𝑟2 𝑠𝑟3 𝑠 𝑟 𝑟2 𝑟3 1
𝑠𝑟2 𝑠𝑟2 𝑠𝑟3 𝑠 𝑠𝑟 𝑟2 𝑟3 1 𝑟
𝑠𝑟3 𝑠𝑟3 𝑠 𝑠𝑟 𝑠𝑟2 𝑟3 1 𝑟 𝑟2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

𝑄8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∗ 1 −1 𝑖 −𝑖 𝑗 −𝑗 𝑘 −𝑘
1 1 −1 𝑖 −𝑖 𝑗 −𝑗 𝑘 −𝑘

−1 −1 1 −𝑖 𝑖 −𝑗 𝑗 −𝑘 𝑘
𝑖 𝑖 −𝑖 −1 1 𝑘 −𝑘 −𝑗 𝑗

−𝑖 −𝑖 𝑖 1 −1 −𝑘 𝑘 𝑗 −𝑗
𝑗 𝑗 −𝑗 −𝑘 𝑘 −1 1 𝑖 −𝑖

−𝑗 −𝑗 𝑗 𝑘 −𝑘 1 −1 −𝑖 𝑖
𝑘 𝑘 −𝑘 𝑗 −𝑗 −𝑖 𝑖 −1 1

−𝑘 −𝑘 𝑘 −𝑗 𝑗 𝑖 −𝑖 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

3. Find a set of generators and relations for 𝑄8.

We can generate all of 𝑄8 with −1, 𝑖, 𝑗, 𝑘 and the relations are (−1)(−1) = 1, 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1.

Therefore a group presentation for 𝑄8 is ⟨−1, 𝑖, 𝑗, 𝑘 ∣ (−1)2 = 1, 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1⟩.

Note: This is only one of several presentations for 𝑄8.

1.6 HOMOMORPHISMS AND ISOMORPHISMS

Let 𝐺 and 𝐻 be groups.

1. Let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism.

(a) Prove that 𝜑(𝑥𝑛) = 𝜑(𝑥)𝑛 for all 𝑛 ∈ ℤ+.



Proof. Since 𝜑 is a homomorphism we have that 𝜑(𝑥 ⋅ 𝑥) = 𝜑(𝑥)𝜑(𝑥).

base case: 𝜑(𝑥) = 𝜑(𝑥)1.

induction hypothesis: Suppose 𝜑(𝑥𝑛−1) = 𝜑(𝑥)𝑛−1.

induction step: Given 𝜑(𝑥𝑛) we have that,

𝜑(𝑥𝑛) = 𝜑(𝑥𝑥𝑛−1)
= 𝜑(𝑥)𝜑(𝑥𝑛−1) [𝜑(𝑥 ⋅ 𝑥) = 𝜑(𝑥)𝜑(𝑥)]
= 𝜑(𝑥)𝜑(𝑥)𝑛−1 [induction hypothesis]
= 𝜑(𝑥)1+(𝑛−1) [base case]
= 𝜑(𝑥)𝑛

Therefore, 𝜑(𝑥𝑛) = 𝜑(𝑥)𝑛 for all 𝑛 ∈ ℤ+.

(b) Do part (a) for 𝑛 = −1 and deduce that 𝜑(𝑥𝑛) = 𝜑(𝑥)𝑛 for all 𝑛 ∈ ℤ.

Proof. For part (a) we proved it for positive 𝑛. The case 𝑛 = 0 is taken care of by the property of a
homomorphism that 𝜑(1) = 1 [i.e., anything raised to the power of zero is 1].

Let 1𝐺 and 1𝐻 be the identity elements for the groups 𝐺 and 𝐻, respectively. Then,

𝜑(𝑥) = 𝜑(𝑥 ⋅ 1𝐺)
𝜑(𝑥) = 𝜑(𝑥)𝜑(1𝐺)

𝜑(𝑥)−1𝜑(𝑥) = 𝜑(𝑥)−1𝜑(𝑥)𝜑(1𝐺)
𝜑(𝑥)−1𝜑(𝑥) = 𝜑(1𝐺)
𝜑(𝑥)−1𝜑(𝑥) = 𝜑(𝑥𝑥−1)
𝜑(𝑥)−1𝜑(𝑥) = 𝜑(𝑥)𝜑(𝑥−1)
𝜑(𝑥)𝜑(𝑥−1) = 𝜑(𝑥)𝜑(𝑥)−1

𝜑(𝑥)−1𝜑(𝑥)𝜑(𝑥−1) = 𝜑(𝑥)−1𝜑(𝑥)𝜑(𝑥)−1

𝜑(𝑥−1) = 𝜑(𝑥)−1

base case: 𝜑(𝑥−1) = 𝜑(𝑥)−1.

induction hypothesis: Suppose 𝜑(𝑥−(𝑛−1)) = 𝜑(𝑥)−(𝑛−1).

induction step: Given 𝜑(𝑥−𝑛) = 𝜑(𝑥)−𝑛 we have that,

𝜑(𝑥−𝑛) = 𝜑(𝑥−1𝑥−(𝑛−1))
= 𝜑(𝑥−1)𝜑(𝑥−(𝑛−1)) [𝜑(𝑥 ⋅ 𝑥) = 𝜑(𝑥)𝜑(𝑥)]
= 𝜑(𝑥−1)𝜑(𝑥)−(𝑛−1) [induction hypothesis]
= 𝜑(𝑥)−1−(𝑛−1) = 𝜑(𝑥)−𝑛 [base case]

Therefore, coupled with the proof from part (a) we see that 𝜑(𝑥𝑛) = 𝜑(𝑥)𝑛 for all 𝑛 ∈ ℤ.

2. If 𝜑 ∶ 𝐺 → 𝐻 is an isomorphism, prove that |𝜑(𝑥)| = |𝑥| for all 𝑥 ∈ 𝐺. Deduce that any two isomorphic
groups have the same number of elements of order 𝑛 for each 𝑛 ∈ ℤ+. Is the result true if 𝜑 is only assumed
to be a homomorphism?

Proof. We know that 𝜑(𝑥𝑛) = 𝜑(𝑥)𝑛 and also that 𝜑(1𝐺) = 1𝐻 [Exercise 1].



Therefore, 𝑥𝑘 = 1𝐺 ⟹ |𝑥| = 𝑘 while 𝜑(1𝐺) = 𝜑(𝑥𝑘) = 𝜑(𝑥)𝑘 = 1𝐻 ⟹ |𝜑(𝑥)| = 𝑘. Since 𝑥, and therefore
𝜑(𝑥), was arbitrary, this shows that |𝑥| = |𝜑(𝑥)| for all 𝑥 ∈ 𝐺 ↦ 𝜑(𝑥) ∈ 𝐻. Thus, since two isomorphic
groups have the same number of elements, they will also have the same number of elements of order 𝑛 for
each 𝑛 ∈ ℤ+.

If 𝜑 is only assumed to be a homomorphism then it may not be an injective homomorphism which means
that the number of elements with the same orders may not match, so no, the result may not still be true.

3. If 𝜑 ∶ 𝐺 → 𝐻 is an isomorphism, prove that 𝐺 is abelian if and only if 𝐻 is abelian. If 𝜑 ∶ 𝐺 → 𝐻 is a
homomorphism, what additional conditions on 𝜑 (if any) are sufficient to ensure that if 𝐺 is abelian, then
so is H?

Proof. If 𝐺 is abelian then for 𝑥, 𝑦 ∈ 𝐺:

𝑥𝑦 = 𝑦𝑥
𝜑(𝑥𝑦) = 𝜑(𝑦𝑥)

𝜑(𝑥)𝜑(𝑦) = 𝜑(𝑦)𝜑(𝑥)

Therefore, 𝐻 is abelian.

Conversely, if 𝐻 is abelian then for 𝜑(𝑥), 𝜑(𝑦) ∈ 𝐻:

𝜑(𝑥)𝜑(𝑦) = 𝜑(𝑦)𝜑(𝑥)
𝜑(𝑥𝑦) = 𝜑(𝑦𝑥)

𝑥𝑦 = 𝑦𝑥 [since 𝜑 is an isomorphism and thus an injection (1-1)]

Therefore, 𝐺 is abelian.

If 𝜑 is a homomorphism and 𝐺 is abelian then we do not need any additional conditions on 𝜑 as the first
part of the proof shows above.

4. Prove that the multiplicative groups ℝ − {0} and ℂ − {0} are not isomorphic.

Proof. Assume there is an isomorphism 𝜑 ∶ ℂ − {0} → ℝ − {0}. Then, since 𝜑(1) = 1 ⟹ 1 = 𝜑(1) =
𝜑((−1)(−1)) = 𝜑(−1)2. Therefore, 𝜑(−1) = ±1 but since 𝜑 is injective and 𝜑(1) = 1, we must then have
that 𝜑(−1) = −1.

Thus, we now have
−1 = 𝜑(−1) = 𝜑(𝑖2) = 𝜑(𝑖)2

Since 𝜑(𝑖) ∈ ℝ − {0}, 𝜑(𝑖)2 must be a positive number. Thus, we have reached a contradiction. Therefore,
the multiplicative groups ℝ − {0} and ℂ − {0} are not isomorphic.

5. Prove that the additive groups ℝ and ℚ are not isomorphic.

Proof. Assume there is an isomorphism 𝜑 ∶ ℝ → ℚ. Since these are additive groups we have that

𝜑(2) = 𝜑(1 + 1)
= 𝜑(1) + 𝜑(1)



We know that for a homomorphism that we have 1 = 𝜑(1) so therefore 𝜑(2) = 1 + 1 = 2. We know that a
homomorphism has the property 𝜑(𝑥𝑛) = 𝜑(𝑥)𝑛 [Exercise 1], so that

2 = 𝜑(2) = 𝜑(√2√2) = 𝜑(√2
2
) = 𝜑(√2)2

However, 𝜑(√2) ∈ ℚ so there exist integers 𝑚, 𝑛 with no common factors such that 𝑚
𝑛 = 𝜑(√2). Therefore,

(𝑚
𝑛 )

2
= 𝜑(√2)2 = 2 ⟹ 𝑚2 = 2𝑛2.

This shows us that 𝑚2 must be even, which means that 𝑚 is even so that we can write 𝑚 = 2𝑡 for integer 𝑡.
This leads to

(2𝑡)2 = 2𝑛2

4𝑡2 = 2𝑛2

2𝑡2 = 𝑛2

which shows that 𝑛2 is even and therefore 𝑛 is even as well.

However, this is a contradiction as we assumed that 𝑚, 𝑛 had no common factors. Therefore, the additive
groups ℝ and ℚ are not isomorphic.

6. Prove that the additive groups ℤ and ℚ are not isomorphic.

Proof. Assume there is an isomorphism 𝜑 ∶ ℚ → ℤ. Since these are additive groups we have that

𝜑(1) = 𝜑 (1
2 + 1

2) = 𝜑 (1
2) + 𝜑 (1

2)

We know that for a homomorphism that we have 1 = 𝜑(1) so therefore

1 = 𝜑 (1
2) + 𝜑 (1

2)

Since 𝜑( 1
2 ) ∈ ℤ this must be an integer but there isn’t an integer that when summed with itself that equals

1. Thus, we have reached a contradiction.

Therefore, the additive groups ℤ and ℚ are not isomorphic.

7. Prove that 𝐷8 and 𝑄8 are not isomorphic.

Proof. For an isomorphism 𝜑 ∶ 𝐺 → 𝐻 we know that for all 𝑥 ∈ 𝐺, |𝑥| = |𝜑(𝑥)|. However, 𝐷8 has 5 elements
that have order 2 [Exercise 1 of Section 2] while 𝑄8 only has 1 element with order 2 [Exercise 1 of Section
5]. Therefore, 𝐷8 and 𝑄8 are not isomorphic.

8. Prove that if 𝑛 ≠ 𝑚, 𝑆𝑛 and 𝑆𝑚 are not isomorphic.

Proof. The order of 𝑆𝑛 and 𝑆𝑚 are |𝑆𝑛| = 𝑛! and |𝑆𝑚| = 𝑚!. Therefore, since 𝑛 ≠ 𝑚 ⟹ 𝑛! ≠ 𝑚!. Thus, the
orders of these groups are not equal and therefore 𝑆𝑛 and 𝑆𝑚 are not isomorphic.

9. Prove that 𝐷24 and 𝑆4 are not isomorphic.



Proof. For an isomorphism 𝜑 ∶ 𝐺 → 𝐻 we know that for all 𝑥 ∈ 𝐺, |𝑥| = |𝜑(𝑥)|. Half of a dihedral group’s
elements have order 2 (all of the the elements that are a multiple of 𝑠 have order 2 since we can use the
relations 𝑠2 = 1 and 𝑟𝑠 = 𝑠𝑟−1) and there are only 9 elements with order 2 in 𝑆4 [Exercise 4 of Section 3].
Therefore, 𝐷24 and 𝑆4 are not isomorphic.

10. Fill in the details of the proof that the symmetric groups 𝑆△ and 𝑆Ω are isomorphic if |△| = |Ω| as follows:
let 𝜃 ∶ △ → Ω be a bijection. Define

𝜑 ∶ 𝑆△ → 𝑆Ω by 𝜑(𝜎) = 𝜃 ∘ 𝜎 ∘ 𝜃−1 for all 𝜎 in 𝑆△

and prove the following:

(a) 𝜑 is well-defined, that is, if 𝜎 is a permutation of △ then 𝜃 ∘ 𝜎 ∘ 𝜃−1 is a permutation of Ω.

Proof. Since

𝜃 ∶ △ → Ω
𝜃−1 ∶ Ω → △

𝜎 ∶ △ → △

Hence, 𝜑(𝜎) = 𝜃 ∘ 𝜎 ∘ 𝜃−1 ⟹ 𝜑(𝜎) ∶ Ω → Ω is a permutation of Ω. Therefore, 𝜑 is well-defined.

(b) 𝜑 is a bijection from 𝑆△ onto 𝑆Ω. [Find a 2-sided inverse for 𝜑.]

Proof. 𝜑−1 should be the reverse of 𝜑. Let 𝜏 be a permutation of Ω.

𝜑−1(𝜏) = 𝜃−1 ∘ 𝜏 ∘ 𝜃
𝜑 ∘ 𝜑−1(𝜏) = 𝜑(𝜃−1 ∘ 𝜏 ∘ 𝜃) = 𝜃 ∘ (𝜃−1 ∘ 𝜏 ∘ 𝜃) ∘ 𝜃−1 = 𝜏
𝜑−1 ∘ 𝜑(𝜎) = 𝜑−1(𝜃 ∘ 𝜎 ∘ 𝜃−1) = 𝜃−1 ∘ (𝜃 ∘ 𝜎 ∘ 𝜃−1) ∘ 𝜃 = 𝜎

and so 𝜑 indeed has a (2-sided) inverse.

(c) 𝜑 is a homomorphism, that is, 𝜑(𝜎 ∘ 𝜏) = 𝜑(𝜎) ∘ 𝜑(𝜏).

Proof.

𝜑(𝜎 ∘ 𝜏) = 𝜃 ∘ 𝜎𝜏 ∘ 𝜃−1 = 𝜃 ∘ 𝜎 ∘ 𝜃−1 ∘ 𝜃 ∘ 𝜏 ∘ 𝜃−1

𝜑(𝜎 ∘ 𝜏) = (𝜃 ∘ 𝜎 ∘ 𝜃−1) ∘ (𝜃 ∘ 𝜏 ∘ 𝜃−1) = 𝜑(𝜎) ∘ 𝜑(𝜏)

Therefore, 𝜑 is a homomorphism.

Note the similarity to the change of basis or similarity transformations for matrices (we shall see connections
between these later in the text).

11. Let 𝐴 and 𝐵 be groups. Prove that 𝐴 × 𝐵 ≅ 𝐵 × 𝐴.

Proof. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Let 𝜑 be the function that swaps 𝑎, 𝑏 in (𝑎, 𝑏) ∈ 𝐴 × 𝐵 so that 𝜑((𝑎, 𝑏)) = (𝑏, 𝑎).
Therefore, 𝜑 is a function that maps 𝐴 × 𝐵 → 𝐵 × 𝐴.

homomorphism: If 𝜑((𝑎1, 𝑏1)(𝑎2, 𝑏2)), then

𝜑((𝑎1, 𝑏1)(𝑎2, 𝑏2)) = 𝜑((𝑎1𝑎2, 𝑏1𝑏2))
= (𝑏1𝑏2, 𝑎1𝑎2)
= (𝑏1, 𝑎1)(𝑏2, 𝑎2)
= 𝜑((𝑎1, 𝑏1))𝜑((𝑎2, 𝑏2))



Therefore, 𝜑 is a homomorphism.

injective:

𝜑((𝑎1, 𝑏1)) = 𝜑((𝑎2, 𝑏2))
(𝑏1, 𝑎1) = (𝑏2, 𝑎2)

so that 𝑏1 = 𝑏2 and 𝑎1 = 𝑎2. Therefore, 𝜑 is injective.

surjective:

Let (𝑏1, 𝑎1) ∈ 𝐵 × 𝐴. Then, we know that

𝜑((𝑎1, 𝑏1)) = (𝑏1, 𝑎1)

Therefore, 𝜑 is surjective.

Since we have shown that 𝜑 is a homomorphism that is both injective and surjective, 𝜑 is a bijection.

Therefore, 𝐴 × 𝐵 ≅ 𝐵 × 𝐴.

12. Let 𝐴, 𝐵, and 𝐶 be groups and let 𝐺 = 𝐴 × 𝐵 and 𝐻 = 𝐵 × 𝐶. Prove that 𝐺 × 𝐶 ≅ 𝐴 × 𝐻.

Proof. Let 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such that (𝑎, 𝑏) ∈ 𝐺 and (𝑏, 𝑐) ∈ 𝐻. Let 𝜑 ∶ 𝐺 × 𝐶 → 𝐴 × 𝐻.

homomorphism:

𝜑(((𝑎1, 𝑏1), 𝑐1)((𝑎2, 𝑏2), 𝑐2)) = 𝜑(((𝑎1𝑎2, 𝑏1𝑏2), 𝑐1𝑐2))
= (𝑎1𝑎2, (𝑏1𝑏2, 𝑐1𝑐2))
= (𝑎1, (𝑏1, 𝑐1))(𝑎2, (𝑏2, 𝑐2))
= 𝜑(((𝑎1, 𝑏1), 𝑐1))𝜑(((𝑎2, 𝑏2), 𝑐2))

Therefore, 𝜑 is a homomorphism.

injective:

𝜑((𝑎1, 𝑏1), 𝑐1) = 𝜑((𝑎2, 𝑏2), 𝑐2)
(𝑎1, (𝑏1, 𝑐1)) = (𝑎2, (𝑏2, 𝑐2))

so that 𝑎1 = 𝑎2 and (𝑏1, 𝑐1) = (𝑏2, 𝑐2) ⟹ 𝑏1 = 𝑏2 and 𝑐1 = 𝑐2. Therefore, 𝜑 is injective.

surjective:

Let (𝑎1, (𝑏1, 𝑐1)) ∈ 𝐴 × 𝐻. Then, we know that

𝜑(((𝑎1, 𝑏1), 𝑐1)) = (𝑎1, (𝑏1, 𝑐1))

Therefore, 𝜑 is surjective.

Since we have shown that 𝜑 is a homomorphism that is both injective and surjective, 𝜑 is a bijection.

Therefore, 𝐺 × 𝐶 ≅ 𝐴 × 𝐻.

13. Let 𝐺 and 𝐻 be groups and let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism. Prove that the image of 𝜑, 𝜑(𝐺), is a
subgroup of 𝐻 (cf. Exercise 26 of Section 1). Prove that if 𝜑 is injective then 𝐺 ≅ 𝜑(𝐺).



Proof. To show that 𝜑(𝐺) is a subgroup of 𝐻 we need to show that it contains the identity element, inverses,
and its elements are associative.

identity: Since 𝜑 is a homomorphism we know that 𝜑(1𝐺) = 1𝐻 . Therefore, 1𝐻 ∈ 𝜑(𝐺).

inverses: Since 𝜑(1) = 𝜑(𝑔𝑔−1) = 𝜑(𝑔)𝜑(𝑔−1) we know that 𝜑(𝑔−1) = 𝜑(𝑔)−1 [Exercise 1].

Therefore, we see that given 𝑔−1 ∈ 𝐺 we have 𝜑(𝑔)−1 ∈ 𝐻.

associative: Since 𝜑 is a homomorphism we know that 𝜑(𝑔1𝑔2) = 𝜑(𝑔1)𝜑(𝑔2). Therefore, since the binary
relation for the group 𝐺 is associative we see that

𝑔1(𝑔2𝑔3) = (𝑔1𝑔2)𝑔3𝜑(𝑔1(𝑔2𝑔3)) = 𝜑((𝑔1𝑔2)𝑔3)𝜑(𝑔1)𝜑((𝑔2𝑔3)) = 𝜑((𝑔1𝑔2))𝜑(𝑔3)𝜑(𝑔1)(𝜑(𝑔2)𝜑(𝑔3)) = (𝜑(𝑔1)𝜑(𝑔2))𝜑(𝑔3)

Thus, 𝜑(𝐺) is associative.

Therefore, 𝜑(𝐺) is a subgroup of 𝐻.

Additionally, if 𝜑 is injective then since we already know that it is surjective (since for all ℎ ∈ 𝜑(𝐺), ∃𝑔 ∈ 𝐺
such that 𝜑(𝑔) = ℎ, which is trivially true from the definition of this homomorphism), this would make it a
bijection and therefore 𝐺 ≅ 𝜑(𝐺).

14. Let 𝐺 and 𝐻 be groups and let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism. Define the kernel of 𝜑 to be {𝑔 ∈ 𝐺 ∣
𝜑(𝑔) = 1𝐻} (so the kernel is the set of elements in 𝐺 which map to the identity of 𝐻, i.e., is the fiber over the
identity of 𝐻). Prove that the kernel of 𝜑 is a subgroup (cf. Exercise 26 of Section 1) of 𝐺. Prove that 𝜑 is
injective if and only if the kernel of 𝜑 is the identity subgroup of 𝐺.

Proof.
identity: Since 𝜑 is a homomorphism we already know that 1𝐻 = 𝜑(1𝐺), therefore 1𝐺 ∈ker𝜑.

inverses: Suppose that 𝑔 ∈ker𝜑, 𝑔 ≠ 1𝐺. Then,

𝜑(𝑔) = 1𝐻
𝜑(𝑔−1)𝜑(𝑔) = 𝜑(𝑔−1)

𝜑(𝑔−1𝑔) = 𝜑(𝑔−1)
𝜑(1𝐺) = 𝜑(𝑔−1)

1𝐻 = 𝜑(𝑔−1)

Therefore, ker𝜑 contains inverses.

associative: Suppose that 𝑔1, 𝑔2, 𝑔3 ∈ker𝜑. Then

𝜑(𝑔1) = 𝜑(𝑔2) = 𝜑(𝑔3) = 1𝐻

Thus,

(𝜑(𝑔1)𝜑(𝑔2))𝜑(𝑔3) = 𝜑(𝑔1)(𝜑(𝑔2)𝜑(𝑔3))
(𝜑(𝑔1𝑔2))𝜑(𝑔3) = 𝜑(𝑔1)(𝜑(𝑔2𝑔3))

𝜑((𝑔1𝑔2)𝑔3) = 𝜑(𝑔1(𝑔2𝑔3))
𝜑((𝑔1𝑔2)𝑔3) = 𝜑(𝑔1(𝑔2𝑔3))

so that (𝑔1𝑔2)𝑔3 = 𝑔1(𝑔2𝑔3). Therefore, ker𝜑 is associative.

Since ker𝜑 contains the identity element, inverses, and is associative, it is a subgroup of 𝐺.



Now, prove that 𝜑 is injective if and only if the kernel of 𝜑 is the identity subgroup of 𝐺.

Proof. If 𝜑 is injective, then there can only be one 𝑔 ∈ 𝐺 such that 𝜑(𝑔) = 1𝐻 . Therefore, ker𝜑 only contains
this one element 𝑔 andwe know that thismust be equal to 1𝐺 as homomorphismsmap identities to identities
(i.e., 𝜑(1𝐺) = 1𝐻).

For the converse direction, we will prove the contrapositive.

If ker𝜑 is not the identity subgroup of 𝐺 then it contains two or more elements that equal 1𝐺. Let 𝑔1, 𝑔2 be
two of these elements. Then,

𝜑(𝑔1) = 1𝐻 and 𝜑(𝑔2) = 1𝐻𝜑(𝑔1) = 𝜑(𝑔2)

but since 𝑔1 ≠ 𝑔2 we see that we have two elements of 𝐺 that map to the same element in 𝐻. Therefore, 𝜑 is
not injective.

Therefore, 𝜑 is injective if and only if the kernel of 𝜑 is the identity subgroup of 𝐺.

15. Define a map 𝜋 ∶ ℝ2 → ℝ by 𝜋((𝑥, 𝑦)) = 𝑥. Prove that 𝜋 is a homomorphism and find the kernel of 𝜋
(cf. Exercise 14).

Proof. 𝜋((𝑥1, 𝑦1) + (𝑥2, 𝑦2)) = 𝜋((𝑥1 + 𝑥2, 𝑦1 + 𝑦2)) = 𝑥1 + 𝑥2 = 𝜋((𝑥1, 𝑦1)) + 𝜋((𝑥2, 𝑦2))

Since any 𝑦 ∈ ℝ suffices 𝜋((0, 𝑦)) = 0, where 0 is the additive identity for ℝ we see that ker𝜋 = {(0, 𝑦) ∣ 𝑦 ∈
ℝ}.

16. Let 𝐴 and 𝐵 be groups and let 𝐺 be their direct product, 𝐴 × 𝐵. Prove that the maps 𝜋1 ∶ 𝐺 → 𝐴 and
𝜋2 ∶ 𝐺 → 𝐵 defined by 𝜋1((𝑎, 𝑏)) = 𝑎 and 𝜋2((𝑎, 𝑏)) = 𝑏 are homomorphisms and find their kernels (cf.
Exercise 14).

Proof.
𝜋1((𝑎1, 𝑏1)(𝑎2, 𝑏2)) = 𝜋1((𝑎1𝑎2, 𝑏1𝑏2)) = 𝑎1𝑎2 = 𝜋1((𝑎1, 𝑏1))𝜋1((𝑎2, 𝑏2))

ker𝜋1 = {(1, 𝑏) ∣ 𝑏 ∈ 𝐵}

𝜋2((𝑎1, 𝑏1)(𝑎2, 𝑏2)) = 𝜋2((𝑎1𝑎2, 𝑏1𝑏2)) = 𝑏1𝑏2 = 𝜋2((𝑎1, 𝑏1))𝜋1((𝑎2, 𝑏2))

ker𝜋2 = {(𝑎, 1) ∣ 𝑎 ∈ 𝐴}

17. Let 𝐺 be any group. Prove that the map from 𝐺 to itself defined by 𝑔 ↦ 𝑔−1 is a homomorphism if and
only if 𝐺 is abelian.

Proof. If the map 𝑔 ↦ 𝑔−1 is a homomorphism, then, letting us denote it as 𝜑, we see that

𝜑(𝑔1𝑔2) = 𝜑(𝑔1)𝜑(𝑔2)
(𝑔1𝑔2)−1 = 𝜑(𝑔1)𝜑(𝑔2)

𝑔−1
2 𝑔−1

1 = 𝜑(𝑔1)𝜑(𝑔2)
𝜑(𝑔2)𝜑(𝑔1) = 𝜑(𝑔1)𝜑(𝑔2)

𝜑(𝑔2𝑔1) = 𝜑(𝑔1𝑔2)

so that 𝑔1𝑔2 = 𝑔2𝑔1. Therefore, 𝐺 is abelian.



Conversely, if 𝐺 is abelian then

𝜑(𝑔1𝑔2) = (𝑔1𝑔2)−1 = 𝑔−1
2 𝑔−1

1 = 𝑔−1
1 𝑔−1

2 = 𝜑(𝑔1)𝜑(𝑔2)

Therefore, 𝜑 is a homomorphism.

18. Let 𝐺 be any group. Prove that the map from 𝐺 to itself defined by 𝑔 ↦ 𝑔2 is a homomorphism if and
only if 𝐺 is abelian.

Proof. Let us denote the map 𝑔 ↦ 𝑔2 as 𝜑.

If 𝜑 is a homomorphism, then

𝜑(𝑔1𝑔2) = 𝜑(𝑔1)𝜑(𝑔2) [definition of homomorphism]
𝜑(𝑔1𝑔2) = 𝑔2

1𝑔2
2 [definition of mapping]

(𝑔1𝑔2)2 = 𝑔2
1𝑔2

2 [definition of mapping]
𝑔1𝑔2𝑔1𝑔2 = 𝑔2

1𝑔2
2

Thus, 𝐺 is abelian.

Conversely, if 𝐺 is abelian then

𝜑(𝑔1𝑔2) = (𝑔1𝑔2)2

= 𝑔1𝑔2𝑔1𝑔2
= 𝑔1𝑔1𝑔2𝑔2 [𝐺 is abelian]
= 𝑔2

1𝑔2
2

= 𝜑(𝑔1)𝜑(𝑔2)

Thus, 𝜑 is a homomorphism.

Therefore, the map from 𝐺 to itself defined by 𝑔 ↦ 𝑔2 is a homomorphism if and only if 𝐺 is abelian.

19. Let 𝐺 = {𝑧 ∈ ℂ ∣ 𝑧𝑛 = 1 for some 𝑛 ∈ ℤ+}. Prove that for any fixed integer 𝑘 > 1 the map from 𝐺 to itself
defined by 𝑧 ↦ 𝑧𝑘 is a surjective homomorphism but is not an isomorphism.

Proof. Let us denote the map 𝑧 ↦ 𝑧𝑘 as 𝜑.

For 𝑘 > 1 and 𝜑(𝑧) = 𝑧𝑘 we have that

𝜑(𝑧1𝑧2) = (𝑧1𝑧2)𝑘

= 𝑧𝑘
1𝑧𝑘

2 [since complex numbers are commutative]
= 𝑧𝑘

1𝑧𝑘
2

= 𝜑(𝑧1)𝜑(𝑧2)

Therefore, 𝜑 is a homomorphism.

surjective:

Let 𝑧1 = 𝑧𝑘 ∈ 𝜑(𝐺). Then, we know that 𝑧 = 𝑘√𝑧1 and

𝜑(𝑧) = 𝜑(𝑘√𝑧1)
= (𝑘√𝑧1)𝑘



= 𝑧1

Therefore, 𝜑 is surjective.

injective:

Counterexample, let 𝑧1 = 𝑖 and 𝑧2 = 1. Obviously 𝑖 ≠ 1 but we have that 𝑧4
1 = 𝑧4

2. Therefore, we have
multiple elements of 𝐺 that map to the same element in 𝜑(𝐺). Therefore, 𝜑 is not injective and thus it is not
an isomorphism.

20. Let 𝐺 be a group and let Aut(𝐺) be the set of all isomorphisms from 𝐺 onto 𝐺. Prove that Aut(𝐺) is
a group under function composition (called the automorphism group of 𝐺 and the elements of Aut(𝐺) are
called automorphisms of 𝐺).

Proof. Aut(𝐺) = {𝜑 ∶ 𝐺 → 𝐺 ∣ 𝜑 is an isomorphism}.

identity: the isomorphism 𝜑(𝑔) = 𝑔 is the identity.

inverses: by definition every isomorphism has an inverse (bijections have inverses that are themselves bi-
jections), which is also an isomorphism.

associative: function composition is associative by definition.

closure: composition of two isomorphisms is another isomorphism.

Therefore, Aut(𝐺) is a group under function composition.

21. Prove that for each fixed nonzero 𝑘 ∈ ℚ the map from ℚ to itself defined by 𝑞 ↦ 𝑘𝑞 is an automorphism
of ℚ (cf. Exercise 20).

Proof. Let 𝜑 ∶ ℚ → ℚ such that 𝜑(𝑞) = 𝑘𝑞 for some nonzero 𝑘 ∈ ℚ.

homomorphism:

𝜑(𝑞1 + 𝑞2) = 𝑘(𝑞1 + 𝑞2)
= 𝑘𝑞1 + 𝑘𝑞2
= 𝜑(𝑞1) + 𝜑(𝑞2)

Therefore, 𝜑 is a homomorphism.

injective:

𝜑(𝑞1) = 𝜑(𝑞2)
𝑘1𝑞1 = 𝑘2𝑞2

so that 𝑞1 = 𝑞2 since 𝑘 is fixed. Therefore, 𝜑 is injective.

surjective:

Let 𝑡 ∈ ℚ and note that 𝑡𝑘−1 is also in ℚ.

𝜑(𝑡𝑘−1) = 𝑘𝑡𝑘−1

= 𝑡𝑘𝑘−1

= 𝑡



Therefore, 𝜑 is surjective.

Since we have shown that 𝜑 is a homomorphism that is both injective and surjective, 𝜑 is a bijection on to
itself, making it an automorphism.

22. Let 𝐴 be an abelian group and fix some 𝑘 ∈ ℤ. Prove that the map 𝑎 ↦ 𝑎𝑘 is a homomorphism from 𝐴 to
itself. If 𝑘 = −1 prove that this homomorphism is an isomorphism (i.e., is an automorphism of 𝐴).

Proof. Let 𝜑 ∶ 𝐴 → 𝐴 such that 𝜑(𝑎) = 𝑎𝑘 for some fixed 𝑘 ∈ ℤ.

homomorphism:

𝜑(𝑎1𝑎2) = (𝑎1𝑎2)𝑘

= 𝑎𝑘
1𝑎𝑘

2 [since 𝐴 is abelian]
= 𝜑(𝑎1)𝜑(𝑎2)

Therefore, 𝜑 is a homomorphism. Since 𝑎𝑘 ∈ 𝐴 it is from 𝐴 to itself.

If 𝑘 = −1, then

injective:

𝜑(𝑎1) = 𝜑(𝑎2)
𝑎−1

1 = 𝑎−1
2

𝑎1𝑎−1
1 = 𝑎1𝑎−1

2
1 = 𝑎1𝑎−1

2
1𝑎2 = 𝑎1𝑎−1

2 𝑎2
𝑎2 = 𝑎1

Therefore, 𝜑 is injective.

surjective:

Let 𝑎 ∈ 𝐴 and note that 𝑎−1 is also in 𝐴.

𝜑(𝑎−1) = (𝑎−1)−1 = 𝑎

Therefore, 𝜑 is surjective.

Since we have shown that 𝜑 is a homomorphism from 𝐴 to itself that is both injective and surjective when
𝑘 = −1, it is therefore an automorphism of 𝐴.

23. Let 𝐺 be a finite group which possesses an automorphism 𝜎 (cf. Exercise 20) such that 𝜎(𝑔) = 𝑔 if and
only if 𝑔 = 1. If 𝜎2 is the identity map from 𝐺 to 𝐺, prove that 𝐺 is abelian (such an automorphism is called
fixed point free of order 2). [Show that every element of 𝐺 can be written in the form 𝑥−1𝜎(𝑥) and apply 𝜎 to
such an expression.]

Proof. The hints suggest showing that every element in 𝐺 can be represented as 𝑥−1𝜎(𝑥). Therefore, we need
to prove that the map 𝑥 ↦ 𝑥−1𝜎(𝑥) is a bijection. If we show that this map is injective, since the group 𝐺 is
finite and domain and codomain are the same, this will show that it is bijective.

𝑔−1
1 𝜎(𝑔1) = 𝑔−1

2 𝜎(𝑔2)
𝑔1𝑔−1

1 𝜎(𝑔1) = 𝑔1𝑔−1
2 𝜎(𝑔2)



𝜎(𝑔1) = 𝑔1𝑔−1
2 𝜎(𝑔2)

𝜎(𝑔1)𝜎(𝑔2)−1 = 𝑔1𝑔−1
2 𝜎(𝑔2)−1

𝜎(𝑔1)𝜎(𝑔2)−1 = 𝑔1𝑔−1
2

𝜎(𝑔1𝑔−1
2 ) = 𝑔1𝑔−1

2
𝜎(𝑔1𝑔−1

2 ) = 1
so that 𝑔1 = 𝑔2, which shows that the map 𝑥 ↦ 𝑥−1𝜎(𝑥) is a bijection.

Now following the second suggestion in the hints
𝜎(𝑔−1𝜎(𝑔)) = 𝜎(𝑔−1)𝜎(𝜎(𝑔)) = 𝜎(𝑔−1)𝑔

Therefore, 𝜎 maps elements to their inverses as 𝑔−1𝜎(𝑔) and 𝜎(𝑔−1)𝑔 are inverses. Now we see that,
𝜎(𝑔1𝑔2) = 𝜎(𝑔1𝑔2)

(𝑔1𝑔2)−1 = 𝜎(𝑔1)𝜎(𝑔2)
𝑔−1

2 𝑔−1
1 = 𝑔−1

1 𝑔−1
2

Therefore, 𝐺 is abelian.

24. Let 𝐺 be a finite group and let 𝑥 and 𝑦 be distinct elements of order 2 in 𝐺 that generate 𝐺. Prove that
𝐺 ≅ 𝐷2𝑛, where 𝑛 = |𝑥𝑦|. [See Exercise 6 in Section 2.]

Proof. Since 𝐺 has generators 𝑥 and 𝑦 with 𝑥2 = 𝑦2 = 1 then the elements of 𝐺 are 𝑥, 𝑥𝑦, 𝑥𝑦𝑥, … and
𝑦, 𝑦𝑥, 𝑦𝑥𝑦, … and since 𝐺 is finite, at some point one of these will equal the identity element, so we will
be done. The identity element cannot be an element like 𝑥𝑦𝑥𝑦𝑥, because we can multiple both sides by 𝑥 (or
𝑦 when appropriate) so that

𝑥𝑦𝑥𝑦𝑥 = 1
𝑥𝑥𝑦𝑥𝑦𝑥𝑥 = 𝑥𝑥 = 1

𝑦𝑥𝑦 = 1
𝑦𝑦𝑥𝑦𝑦 = 𝑦𝑦 = 1

𝑥 = 1
where the same logic can be applied for 𝑦𝑥𝑦𝑥𝑦 as well. Therefore, the identity element will be of the form
(𝑥𝑦)𝑛.

Therefore, the presentation for 𝐺 is
⟨𝑥, 𝑦 ∣ 𝑥2 = 𝑦2 = (𝑥𝑦)𝑛 = 1⟩

Additionally, since 𝑥2 = 1, 𝑦2 = 1 ⟹ 𝑥 = 𝑥−1, 𝑦 = 𝑦−1 we see that if we let 𝑟 = 𝑥𝑦 then
𝑟𝑥 = (𝑥𝑦)𝑥

= 𝑥(𝑦𝑥)
= 𝑥(𝑦−1𝑥−1)
= 𝑥(𝑥𝑦)−1

= 𝑥𝑟−1

The presentation of 𝐺 can now be shown to be isomorphic to 𝐷2𝑛 by letting 𝑟 = 𝑥𝑦 and 𝑠 = 𝑥. We showed
that 𝐷2𝑛 can also be generated by 𝑠 and 𝑠𝑟 [Exercise 3 of Section 2] which maps to 𝑥 and 𝑥𝑥𝑦, respectively.
But 𝑥𝑥𝑦 = 𝑦 since 𝑥2 = 1. Thus, we can denote the presentation for 𝐺 as

⟨𝑠, 𝑠𝑟 ∣ 𝑠2 = (𝑠𝑟)2 = (𝑟)𝑛 = 1, 𝑟𝑠 = 𝑠𝑟−1⟩
Therefore, 𝐺 ≅ 𝐷2𝑛, where 𝑛 = |𝑥𝑦|.



25. Let 𝑛 ∈ ℤ+, let 𝑟 and 𝑠 be the usual generators of 𝐷2𝑛 and let 𝜃 = 2𝜋/𝑛.

(a) Prove that the matrix (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) is the matrix of the linear transformation which rotates the 𝑥, 𝑦

plane about the origin in a counterclockwise direction by 𝜃 radians.

Proof. A point in the 𝑥, 𝑦 plane can be represented by a column vector (𝑥
𝑦).

We can see that this transformation does not move the origin

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) (0

0) = (0
0)

and that it moves the 𝑥-axis (unit vector pointing in the 𝑥 direction) to

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) (1

0) = (cos 𝜃
sin 𝜃)

and that it moves the 𝑦-axis (unit vector pointing in the 𝑦 direction) to

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) (0

1) = (− sin 𝜃
cos 𝜃 )

and finally, for any general point (𝑥, 𝑦) to

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) (𝑥

𝑦) = (𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑥 sin 𝜃 + 𝑦 cos 𝜃)

This shows that the matrix (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) is the matrix of the linear transformation which rotates the

𝑥, 𝑦 plane about the origin in a counterclockwise direction by 𝜃 radians.

(b) Prove that the map 𝜑 ∶ 𝐷2𝑛 → 𝐺𝐿2(ℝ) defined on generators by

𝜑(𝑟) = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) and 𝜑(𝑠) = (0 1

1 0)

extends to a homomorphism of 𝐷2𝑛 into 𝐺𝐿2(ℝ).

Proof. For 𝜑 to be a homomorphism we need 𝜑(𝑟𝑟) = 𝜑(𝑟)𝜑(𝑟) and 𝜑(𝑠𝑠) = 𝜑(𝑠)𝜑(𝑠).

𝜑(𝑟𝑟) = 𝜑(𝑟2) = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

2

= (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) (cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ) = 𝜑(𝑟)𝜑(𝑟)

Additionally, 𝜑(𝑟2) ∈ 𝐺𝐿2(ℝ) because

𝜑(𝑟2) = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) (cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ) = (cos2 𝜃 − sin2 𝜃 −2 cos 𝜃 sin 𝜃
2cos𝜃 sin 𝜃 cos2 𝜃 − sin2 𝜃)

and det(𝜑(𝑟2)) = cos4 𝜃 + 2 cos2 𝜃 sin2 𝜃 + sin4 𝜃 ≠ 0

𝜑(𝑠𝑠) = 𝜑(𝑠2) = (0 1
1 0)

2

= (0 1
1 0) (0 1

1 0) = 𝜑(𝑠)𝜑(𝑠)

Additionally, 𝜑(𝑠2) ∈ 𝐺𝐿2(ℝ) because 𝜑(𝑠2) = 𝜑(1) = 1 as we can see here

𝜑(𝑠2) = (0 1
1 0) (0 1

1 0) = (1 0
0 1) = 1

Therefore, 𝜑 ∶ 𝐷2𝑛 → 𝐺𝐿2(ℝ) extends to a homomorphism of 𝐷2𝑛 into 𝐺𝐿2(ℝ).



(c) Prove that the homomorphism 𝜑 in part (b) is injective.

Proof.

𝜑(𝑟1) = 𝜑(𝑟2) (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

1
= (cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 )
2

𝑟1 = 𝑟2

as the rotation of 𝜃 radians is the same for both matrices so they represent the same rotation.

𝜑(𝑠1) = 𝜑(𝑠2) (0 1
1 0)

1
= (0 1

1 0)
2

𝑠1 = 𝑠2

Therefore, 𝜑 is injective.

26. Let 𝑖 and 𝑗 be the generators of 𝑄8 described in Section 5. Prove that the map 𝜑 from 𝑄8 to 𝐺𝐿2(ℂ)
defined on generators by

𝜑(𝑖) = ⎛⎜
⎝

√−1 0
0 −√−1

⎞⎟
⎠

and 𝜑(𝑗) = (0 −1
1 0 )

extends to a homomorphism. Prove that 𝜑 is injective.

Proof.
homomorphism:

𝜑(𝑖𝑖) = 𝜑(𝑖2) = ⎛⎜
⎝

√−1 0
0 −√−1

⎞⎟
⎠

2

= ⎛⎜
⎝

√−1 0
0 −√−1

⎞⎟
⎠

⎛⎜
⎝

√−1 0
0 −√−1

⎞⎟
⎠

= 𝜑(𝑖)𝜑(𝑖)

𝜑(𝑗𝑗) = 𝜑(𝑗2) = (0 −1
1 0 )

2

= (0 −1
1 0 ) (0 −1

1 0 ) = 𝜑(𝑗)𝜑(𝑗)

injective:

𝜑(𝑖1) = 𝜑(𝑖2) ⎛⎜
⎝

√−1 0
0 −√−1

⎞⎟
⎠1

= ⎛⎜
⎝

√−1 0
0 −√−1

⎞⎟
⎠2

𝑖1 = 𝑖2

as the matrices are constants, this trivially shows there is only one 𝑖.

The same argument suffices for 𝜑(𝑗).

1.7 GROUP ACTIONS

1. Let 𝐹 be a field. Show that the multiplicative group of nonzero elements of 𝐹 (denoted by 𝐹×) acts on
the set 𝐹 by 𝑔 ⋅ 𝑎 = 𝑔𝑎, where 𝑔 ∈ 𝐹×, 𝑎 ∈ 𝐹 and 𝑔𝑎 is the usual product in 𝐹 of the two field elements (state
clearly which axioms in the definition of a field are used).

Proof. Let 𝑓1, 𝑓2 ∈ 𝐹× and 𝑎 ∈ 𝐹, then

𝑓1 ⋅ (𝑓2 ⋅ 𝑎) = (𝑓1𝑓2) ⋅ 𝑎 [field elements are associative]
1 ⋅ 𝑎 = 𝑎, for all 𝑎 ∈ 𝐹 [1 is the multiplicative identity of 𝐹×]

This shows that the multiplicative group 𝐹× acts on 𝐹.

2. Show that the additive group ℤ acts on itself by 𝑧 ⋅ 𝑎 = 𝑧 + 𝑎 for all 𝑧, 𝑎 ∈ ℤ.



Proof. Let 𝑧1, 𝑧2, 𝑎 ∈ ℤ, then

𝑧1 ⋅ (𝑧2 ⋅ 𝑎) = 𝑧1 + (𝑧2 + 𝑎) = (𝑧1 + 𝑧2) + 𝑎 [addition is commutative in ℤ]
0 ⋅ 𝑎 = 0 + 𝑎 = 𝑎, for all 𝑎 ∈ ℤ [0 is the identity element of the additive group ℤ]

This shows that the additive group ℤ acts on itself.

3. Show that the additive group ℝ acts on the 𝑥, 𝑦 plane ℝ × ℝ by 𝑟 ⋅ (𝑥, 𝑦) = (𝑥 + 𝑟𝑦, 𝑦).

Proof. Let 𝑟1, 𝑟2 ∈ ℝ and (𝑥, 𝑦) ∈ ℝ × ℝ, then

𝑟1 ⋅ (𝑟2 ⋅ (𝑥, 𝑦)) = 𝑟1 ⋅ (𝑥 + 𝑟2𝑦, 𝑦)
= ((𝑥 + 𝑟2𝑦) + 𝑟1𝑦, 𝑦)
= (𝑥 + (𝑟2 + 𝑟1)𝑦, 𝑦)
= (𝑟2 ⋅ 𝑟1) ⋅ (𝑥, 𝑦)

where ⋅ in (𝑟1 ⋅ 𝑟2) is the group operation of the additive group ℝ.

0 ⋅ (𝑥, 𝑦) = (𝑥 + 0𝑦, 𝑦) = (𝑥, 𝑦)

This shows that the additive group ℝ acts on the 𝑥, 𝑦 plane ℝ × ℝ.

4. Let 𝐺 be a group acting on a set 𝐴 and fix some 𝑎 ∈ 𝐴. Show that the following sets are subgroups of 𝐺
(cf. Exercise 26 of Section 1):

(a) the kernel of the action.

Proof. The kernel of the action is the group {𝑔 ∈ 𝐺 ∣ 𝑔 ⋅ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐴}.

Let 𝑔1, 𝑔2 in the kernel of the action and 𝑎 ∈ 𝐴, then

identity: Since 𝐺 is a group that acts on 𝐴 we know that 1 ⋅𝑎 = 𝑎 by definition. Therefore, by definition,
the kernel of the action always contains the identity element.

associative: Since 𝐺 is a group that acts on 𝐴 we know that 𝑔1 ⋅ (𝑔2 ⋅ 𝑎) = (𝑔1𝑔2) ⋅ 𝑎 by definition. Since
𝑔1, 𝑔2 are in the kernel of the action this becomes 𝑔1 ⋅ (𝑔2 ⋅ 𝑎) = 𝑔1 ⋅ (𝑎) = 𝑎 so that the kernel of the action
is associative.

inverses: Since 1 ⋅ 𝑎 = 𝑎

1 ⋅ 𝑎 = (𝑔−1𝑔) ⋅ 𝑎
= 𝑔−1 ⋅ (𝑔 ⋅ 𝑎)
= 𝑔−1 ⋅ 𝑎
= 𝑎

Thus, the kernel of the action contains inverses.

Therefore, the kernel of the action is a subgroup of 𝐺.

(b) {𝑔 ∈ 𝐺 ∣ 𝑔𝑎 = 𝑎} — this subgroup is called the stabilizer of 𝑎 in 𝐺.

Proof. We can use the same proof as part (a) above. That proof used an arbitrary 𝑎 to account for all
𝑎 ∈ 𝐴, whereas for the stabilizer of 𝑎 in𝐺wewould use a specific 𝑎. The proofs are therefore the same.



5. Prove that the kernel of an action of the group 𝐺 on the set 𝐴 is the same as the kernel of the corresponding
permutation representation 𝐺 → 𝑆𝐴 (cf. Exercise 14 in Section 6).

Proof. The identity element of 𝑆𝐴 is the permutation that does nothing to the elements of 𝐴 and leaves them
all fixed. The kernel of 𝐺 → 𝑆𝐴 is all of the elements of 𝐺 that map to the identity of element of 𝑆𝐴 which is
the permutation that does nothing and keep the elements of 𝐴 fixed (i.e., it is the fiber over the identity of
𝐴). This is exactly what the kernel of an action of the group 𝐺 on the set 𝐴 is, by definition. Therefore, they
must be equal.

6. Prove that a group 𝐺 acts faithfully on a set 𝐴 if and only if the kernel of the action is the set consisting
only of the identity.

Proof. If a group 𝐺 acts faithfully on a set 𝐴 thenwe know it is an action in which the associated permutation
representation is injective. Therefore, the kernel of the corresponding permutation representation 𝐺 → 𝑆𝐴
only contains the identity element [Exercise 14 of Section 6] and therefore the kernel of the action only
contains the identity element [Exercise 5].

Conversely, if the kernel of the action only contains the identity element then so too does the kernel of the
corresponding permutation representation 𝐺 → 𝑆𝐴 [Exercise 5]. Since the kernel of the corresponding
permutation only contains the identity element it is injective [Exercise 14 of Section 6] and therefore the
group 𝐺 acts faithfully on the set 𝐴.

7. Prove that in Example 2 in this section the action is faithful.

Proof. In Example 2 we have 𝑉 = ℝ𝑛 and 𝐹 = ℝ where the group action is specified by

𝛼(𝑟1, 𝑟2, … , 𝑟𝑛) = (𝛼𝑟1, 𝛼𝑟2, … , 𝛼𝑟𝑛)

for all 𝛼 ∈ ℝ, (𝑟1, 𝑟2, … , 𝑟𝑛) ∈ ℝ𝑛, where 𝛼𝑟𝑖 is just multiplication of two real numbers.

The kernel of the associated permutation representation ℝ → ℝ𝑛 is the elements of ℝ that map to the
identity permutation. The identity permutation is the permutation that does nothing to the elements of ℝ𝑛

and leaves them fixed.

The only element in ℝ that has this capability is the multiplicative identity of ℝ×, i.e. 1. Since this is the only
element in the kernel of the associated permutation representation we know that the kernel of the group
action only contains the identity element as these two groups are equal [Exercise 5] and therefore the action
is faithful [Exercise 6].

8. Let 𝐴 be a nonempty set and let 𝑘 be a positive integer with 𝑘 ≤ |𝐴|. The symmetric group 𝑆𝐴 acts on the
set 𝐵 consisting of all subsets of 𝐴 of cardinality 𝑘 by 𝜎 ⋅ {𝑎1, … , 𝑎𝑘} = {𝜎(𝑎1), … , 𝜎(𝑎𝑘)}.

(a) Prove that this is a group action.

Proof. Let 𝜎1, 𝜎2 ∈ 𝑆𝐴 and {𝑎1, … , 𝑎𝑘} ∈ 𝐵.

Since symmetric groups are groups under function composition we see that

𝜎1 ⋅ (𝜎2 ⋅ {𝑎1, … , 𝑎𝑘}) ⟹ 𝜎1 ∘ (𝜎2 ∘ {𝑎1, … , 𝑎𝑘})
𝜎1 ∘ (𝜎2 ∘ {𝑎1, … , 𝑎𝑘}) = (𝜎1 ∘ 𝜎2) ∘ {𝑎1, … , 𝑎𝑘} [function composition is associative]

Let 1 be the identity permutation of 𝑆𝐴, then

1 ⋅ {𝑎1, … , 𝑎𝑘} = {1(𝑎1), … , 1(𝑎𝑘)} = {𝑎1, … , 𝑎𝑘}



Therefore, this is a group action.

(b) Describe explicitly how the elements (1 2) and (1 2 3) act on the six 2-element subsets of {1, 2, 3, 4}. The
six 2-element subsets of {1, 2, 3, 4} are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

(1 2)({1, 2}) = {𝜎(1 2)(1), 𝜎(1 2)(2)} = {2, 1}
(1 2)({1, 3}) = {𝜎(1 2)(1), 𝜎(1 2)(3)} = {2, 3}
(1 2)({1, 4}) = {𝜎(1 2)(1), 𝜎(1 2)(4)} = {2, 4}
(1 2)({2, 3}) = {𝜎(1 2)(2), 𝜎(1 2)(3)} = {1, 3}
(1 2)({2, 4}) = {𝜎(1 2)(2), 𝜎(1 2)(4)} = {1, 4}
(1 2)({3, 4}) = {𝜎(1 2)(3), 𝜎(1 2)(4)} = {3, 4}

(1 2 3)({1, 2}) = {𝜎(1 2 3)(1), 𝜎(1 2 3)(2)} = {2, 3}
(1 2 3)({1, 3}) = {𝜎(1 2 3)(1), 𝜎(1 2 3)(3)} = {2, 1}
(1 2 3)({1, 4}) = {𝜎(1 2 3)(1), 𝜎(1 2 3)(4)} = {2, 4}
(1 2 3)({2, 3}) = {𝜎(1 2 3)(2), 𝜎(1 2 3)(3)} = {3, 1}
(1 2 3)({2, 4}) = {𝜎(1 2 3)(2), 𝜎(1 2 3)(4)} = {3, 4}
(1 2 3)({3, 4}) = {𝜎(1 2 3)(3), 𝜎(1 2 3)(4)} = {1, 4}

9. Do both parts of the preceding exercise with “ordered 𝑘-tuples” in place of “𝑘-element subsets”, where
the action 𝑘-tuples is defined as above but with set braces replaced by parentheses (note that, for example,
the 2-tuples (1, 2) and (2, 1) are different even though the sets {1, 2} and {2, 1} are the same, so the sets being
acted upon are different).

(a) Prove that this is a group action.

Proof. Let 𝜎1, 𝜎2 ∈ 𝑆𝐴 and (𝑎1, … , 𝑎𝑘) ∈ 𝐵.

Since symmetric groups are groups under function composition we see that

𝜎1 ⋅ (𝜎2 ⋅ (𝑎1, … , 𝑎𝑘)) ⟹ 𝜎1 ∘ (𝜎2 ∘ (𝑎1, … , 𝑎𝑘))
𝜎1 ∘ (𝜎2 ∘ (𝑎1, … , 𝑎𝑘)) = (𝜎1 ∘ 𝜎2) ∘ (𝑎1, … , 𝑎𝑘) [function composition is associative]

Let 1 be the identity permutation of 𝑆𝐴, then

1 ⋅ (𝑎1, … , 𝑎𝑘) = (1(𝑎1), … , 1(𝑎𝑘)) = (𝑎1, … , 𝑎𝑘)

Therefore, this is a group action.

(b) Describe explicitly how the elements (1 2) and (1 2 3) act on the twelve 2-element subsets of (1, 2, 3, 4).
The twelve 2-element subsets of (1, 2, 3, 4) are:

(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3).

(1 2)((1, 2)) = (𝜎(1 2)(1), 𝜎(1 2)(2)) = (2, 1)
(1 2)((2, 1)) = (𝜎(1 2)(2), 𝜎(1 2)(1)) = (1, 2)
(1 2)((1, 3)) = (𝜎(1 2)(1), 𝜎(1 2)(3)) = (2, 3)
(1 2)((3, 1)) = (𝜎(1 2)(3), 𝜎(1 2)(1)) = (3, 2)
(1 2)((1, 4)) = (𝜎(1 2)(1), 𝜎(1 2)(4)) = (2, 4)
(1 2)((4, 1)) = (𝜎(1 2)(4), 𝜎(1 2)(1)) = (4, 2)
(1 2)((2, 3)) = (𝜎(1 2)(2), 𝜎(1 2)(3)) = (1, 3)



(1 2)((3, 2)) = (𝜎(1 2)(3), 𝜎(1 2)(2)) = (3, 1)
(1 2)((2, 4)) = (𝜎(1 2)(2), 𝜎(1 2)(4)) = (1, 4)
(1 2)((4, 2)) = (𝜎(1 2)(4), 𝜎(1 2)(2)) = (4, 1)
(1 2)((3, 4)) = (𝜎(1 2)(3), 𝜎(1 2)(4)) = (3, 4)
(1 2)((4, 3)) = (𝜎(1 2)(4), 𝜎(1 2)(3)) = (4, 3)

(1 2 3)((1, 2)) = (𝜎(1 2 3)(1), 𝜎(1 2 3)(2)) = (2, 3)
(1 2 3)((2, 1)) = (𝜎(1 2 3)(2), 𝜎(1 2 3)(1)) = (3, 2)
(1 2 3)((1, 3)) = (𝜎(1 2 3)(1), 𝜎(1 2 3)(3)) = (2, 1)
(1 2 3)((3, 1)) = (𝜎(1 2 3)(3), 𝜎(1 2 3)(1)) = (1, 2)
(1 2 3)((1, 4)) = (𝜎(1 2 3)(1), 𝜎(1 2 3)(4)) = (2, 4)
(1 2 3)((4, 1)) = (𝜎(1 2 3)(4), 𝜎(1 2 3)(1)) = (4, 2)
(1 2 3)((2, 3)) = (𝜎(1 2 3)(2), 𝜎(1 2 3)(3)) = (3, 1)
(1 2 3)((3, 2)) = (𝜎(1 2 3)(3), 𝜎(1 2 3)(2)) = (1, 3)
(1 2 3)((2, 4)) = (𝜎(1 2 3)(2), 𝜎(1 2 3)(4)) = (3, 4)
(1 2 3)((4, 2)) = (𝜎(1 2 3)(4), 𝜎(1 2 3)(2)) = (4, 3)
(1 2 3)((3, 4)) = (𝜎(1 2 3)(3), 𝜎(1 2 3)(4)) = (1, 4)
(1 2 3)((4, 3)) = (𝜎(1 2 3)(4), 𝜎(1 2 3)(3)) = (4, 1)

10. With reference to the preceding two exercises determine:

(a) for which values of 𝑘 the action of 𝑆𝑛 on 𝑘-element subsets is faithful, and If 𝑘 = 𝑛, then the only subset
is the set itself. All permutations of this set, 𝑆𝑛, leave the set fixed. Therefore, the kernel of the action
is 𝑆𝑛, which is obviously not faithful.

If 𝑘 = 1, then the subsets are the singletons of 𝑛. The only permutation that can keep these subsets all
fixed is the identity permutation of 𝑆𝑛. Therefore, this value of 𝑘 is faithful.

If 𝑘 > 1 and 𝑘 ≠ 𝑛, then the there will be subsets that share the same elements among themselves
which means there will not be a single permutation that can fix all the subsets, except for the identity
permutation of 𝑆𝑛. Therefore, this value of 𝑘 is faithful.

Thus, for 𝑘 < 𝑛 the action of 𝑆𝑛 on 𝑘-element subsets is faithful.

(b) for which values of 𝑘 the action of 𝑆𝑛 on ordered 𝑘-tuples is faithful. If 𝑘 = 𝑛, we would have 𝑛 ordered
𝑛-tuples. As theses tuples are all distinct, any permutation other than the identity permutation would
change them, which means they would not be fixed. Therefore, this value of 𝑘 is faithful.

If 𝑘 = 1, then the ordered tuples are the singletons of 𝑛. The only permutation that can keep these
tuples all fixed is the identity permutation of 𝑆𝑛. Therefore, this value of 𝑘 is faithful.

If 𝑘 > 1 and 𝑘 ≠ 𝑛, then the there will be tuples that share the same elements among themselves
which means there will not be a single permutation that can fix all these tuples, except for the identity
permutation of 𝑆𝑛. Therefore, this value of 𝑘 is faithful.

Thus, for 𝑘 ≤ 𝑛 the action of 𝑆𝑛 on 𝑘-element subsets is faithful.

11. Write out the cycle decomposition of the eight permutations in 𝑆4 corresponding to the elements of 𝐷8
given by the action of 𝐷8 on the vertices of a square (where the vertices of the square are labeled as in Section
2).



In Section 2 the text states (there is also a figure of the labeled square that makes up 𝐷8)

Fix a regular 𝑛-gon centered at the origin in an 𝑥, 𝑦 plane and label the vertices consecutively from 1 to 𝑛 in
a clockwise manner. Let 𝑟 be the rotation clockwise about the origin through 2𝜋/𝑛 radian. Let 𝑠 be the

reflection about the line of symmetry through vertex 1 and the origin.

The elements of 𝐷8 are {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3} and the corresponding permutations in 𝑆4 are:

{1, (1234), (13)(24), (1432), (24), (14)(23), (13), (12)(34)}

12. Assume 𝑛 is an even positive integer and show that 𝐷2𝑛 acts on the set consisting of pairs of opposite
vertices of a regular 𝑛-gon. Find the kernel of this action (label vertices as usual).

Proof. Let 𝑛 be even and let the 𝑛-gon be labeled clockwise as 0, 2, … , 𝑛−1 and let us denote the set of ordered
pairs as:

{𝑎𝑖} = {(𝑖, 𝑖 + 𝑛
2 ) ∣ 0 ≤ 𝑖 < 𝑛

2 }

Since 𝐷2𝑛 is generated from 𝑟 and 𝑠, where 𝑟 a clockwise rotation (𝑛 rotations) and 𝑠 is a reflection about
an axis through two vertices (𝑛/2 axes of reflection) we see that we can represent the action of 𝐷2𝑛 on the
elements of {𝑎𝑖} as:

𝑟𝑘𝑎𝑖 ≡ 𝑎(𝑖−𝑘) (mod 𝑛)
𝑠𝑘𝑎𝑖 ≡ 𝑎(𝑖−𝑘𝑛/2) (mod 𝑛)

Now we will show that these meet the properties of a group action:

Let 𝑔1, 𝑔2 ∈ 𝐷2𝑛 such that 𝑔1 = 𝑠𝑎𝑟𝑏 and 𝑔2 = 𝑠𝑐𝑟𝑑

𝑔1 ⋅ (𝑔2 ⋅ 𝑎) ⟹ 𝑠𝑎𝑟𝑏 ⋅ (𝑠𝑐𝑟𝑑 ⋅ 𝑎𝑖)
⟹ 𝑠𝑎𝑟𝑏 ⋅ 𝑎((𝑖−𝑑)−𝑐𝑛/2)
⟹ 𝑎((((𝑖−𝑑)−𝑐𝑛/2)−𝑏)−𝑎𝑛/2)

⟹ (𝑠𝑎𝑟𝑏𝑠𝑐𝑟𝑐) ⋅ 𝑎𝑖
⟹ (𝑔1𝑔2) ⋅ 𝑎𝑖

𝑟𝑛 ⋅ 𝑎𝑖 ≡ 𝑎(𝑖−𝑛) (mod 𝑛) ⟹ 1 ⋅ 𝑎𝑖 ≡ 𝑎𝑖 (mod 𝑛)
𝑠2 ⋅ 𝑎𝑖 ≡ 𝑎(𝑖−2𝑛/2) (mod 𝑛) ⟹ 1 ⋅ 𝑎𝑖 ≡ 𝑎𝑖 (mod 𝑛)

Therefore, 1 ⋅ 𝑎𝑖 = 𝑎𝑖 for all 𝑎𝑖 ∈ {𝑎𝑖}. Thus, we have shown this a group action.

The kernel of this action is 𝑟𝑛 = 𝑠2 = 1 ⟹ {1}.

13. Find the kernel of the left regular action.

Proof. The left regular action is when the group 𝐺 acts on itself with the map 𝑔 ∶ 𝑎 ↦ 𝑔𝑎 for all 𝑎 ∈ 𝐺.

Therefore, the kernel of the left regular action is the identity element of 𝐺 as all other elements of 𝐺 will not
have this property for all 𝑎 ∈ 𝐺.

14. Let 𝐺 be a group and let 𝐴 = 𝐺. Show that if 𝐺 is non-abelian then the maps defined by 𝑔 ⋅ 𝑎 = 𝑎𝑔 for all
𝑔, 𝑎 ∈ 𝐺 do not satisfy the axioms of a (left) group action of 𝐺 on itself.



Proof. The first property of a group action (left) would give:

𝑔1 ⋅ (𝑔2 ⋅ 𝑎) = 𝑔1 ⋅ (𝑎𝑔2) = (𝑎𝑔2𝑔1)

but
(𝑔1𝑔2) ⋅ 𝑎 = (𝑎𝑔1𝑔2).

However, since 𝐺 is non-abelian we see that

(𝑎𝑔2𝑔1) ≠ (𝑎𝑔1𝑔2) ⟹ 𝑔1 ⋅ (𝑔2 ⋅ 𝑎) ≠ (𝑔1𝑔2) ⋅ 𝑎.

Therefore, these maps do not satisfy the axioms of a (left) group action of 𝐺 on itself.

15. Let 𝐺 be a group and let 𝐴 = 𝐺. Show that the maps defined by 𝑔 ⋅ 𝑎 = 𝑎𝑔−1 for all 𝑔, 𝑎 ∈ 𝐺 do satisfy the
axioms of a (left) group action of 𝐺 on itself.

Proof.

𝑔1 ⋅ (𝑔2 ⋅ 𝑎) = 𝑔1 ⋅ (𝑎𝑔−1
2 )

= (𝑎𝑔−1
2 𝑔−1

1 )
= (𝑎(𝑔1𝑔2)−1)
= (𝑔1𝑔2) ⋅ 𝑎

Thus, 𝑔 = 1 ⟹ 1 ⋅ 𝑎 = 𝑎1−1 = 𝑎.

Therefore, these maps do satisfy the axioms of a (left) group action of 𝐺 on itself.

16. Let 𝐺 be any group and let 𝐴 = 𝐺. Show that the maps defined by 𝑔 ⋅ 𝑎 = 𝑔𝑎𝑔−1 for all 𝑔, 𝑎 ∈ 𝐺 do satisfy
the axioms of a (left) group action (this action of 𝐺 on itself is called conjugation).

Proof.

𝑔1 ⋅ (𝑔2 ⋅ 𝑎) = 𝑔1 ⋅ (𝑔2𝑎𝑔−1
2 )

= 𝑔1(𝑔2𝑎𝑔−1
2 )𝑔−1

1
= (𝑔1𝑔2)𝑎(𝑔1𝑔2)−1

= (𝑔1𝑔2) ⋅ 𝑎

Thus, 𝑔 = 1 ⟹ 1 ⋅ 𝑎 = 1𝑎1−1 = 𝑎.

Therefore, these maps do satisfy the axioms of a (left) group action of 𝐺 on itself.

17. Let 𝐺 be a group and let 𝐺 act on itself by left conjugation, so each 𝑔 ∈ 𝐺 maps 𝐺 to 𝐺 by

𝑥 ↦ 𝑔𝑥𝑔−1

For fixed 𝑔 ∈ 𝐺, prove that conjugation by 𝑔 is an isomorphism from 𝐺 onto itself (i.e., is an automorphism
of 𝐺 — [Exercise 20 of Section 6]). Deduce that 𝑥 and 𝑔𝑥𝑔−1 have the same order for all 𝑥 in 𝐺 and that for
any subset 𝐴 of 𝐺, |𝐴| = |𝑔𝐴𝑔−1| (here 𝑔𝐴𝑔−1 = {𝑔𝑎𝑔−1 ∣ 𝑎 ∈ 𝐴}).

Proof. Let the map for the conjugation by g 𝑥 ↦ 𝑔𝑥𝑔−1 be denoted by 𝜑. To prove this is an automorphism
we must show that it is a bijective homomorphism.

homomorphism:

𝜑(𝑥 ⋅ 𝑦) = 𝑔(𝑥𝑦)𝑔−1



= 𝑔(𝑥1𝑦)𝑔−1

= 𝑔(𝑥𝑔−1𝑔𝑦)𝑔−1

= (𝑔𝑥𝑔−1)(𝑔𝑦𝑔−1)
= 𝜑(𝑥)𝜑(𝑦)

Therefore, 𝜑 is a homomorphism.

injective:

𝜑(𝑥1) = 𝜑(𝑥2)
𝑔𝑥1𝑔−1 = 𝑔𝑥2𝑔−1

𝑔−1(𝑔𝑥1𝑔−1) = 𝑔−1(𝑔𝑥2𝑔−1)
𝑥1𝑔−1 = 𝑥2𝑔−1

(𝑥1𝑔−1)𝑔 = (𝑥2𝑔−1)𝑔
𝑥1 = 𝑥2

Therefore, 𝜑 is injective.

surjective:

Let 𝑧1 = 𝑧𝑘 ∈ 𝜑(𝐺). Then, we know that 𝑧 = 𝑘√𝑧1 and

𝜑(𝑧) = 𝜑(𝑘√𝑧1) = (𝑘√𝑧1)𝑘 = 𝑧1

Therefore, 𝜑 is surjective.

Let 𝑥1 = 𝑔𝑥𝑔−1 ∈ 𝜑(𝐺). Then, we know that 𝑥 = 𝑔−1𝑥1𝑔 and

𝜑(𝑥) = 𝑔(𝑔−1𝑥1𝑔)𝑔−1 = 𝑥1

Therefore, 𝜑 is surjective.

Since, 𝜑 is a bijective homomorphism from 𝐺 onto itself, it is an automorphism.

|𝑥| and |𝑔𝑥𝑔−1| have the same order for all of 𝑥 because |𝑥| ⟹

𝑥𝑛 = 1
𝑔𝑛𝑥𝑛 = 𝑔𝑛

𝑔𝑛𝑥𝑛𝑔−𝑛 = 𝑔𝑛𝑔−𝑛 = 1
(𝑔𝑥𝑔−1)𝑛 = 1

Thus, |𝑔𝑥𝑔−1| = 1.

Additionally, for any subset 𝐴 of 𝐺 since we know that the map 𝑥 ↦ 𝑔𝑥𝑔−1 is a bijection then 𝑎 ↦ 𝑔𝑎𝑔−1 is a
1-1 map and therefore the cardinality of 𝐴 and 𝑔𝐴𝑔−1 must be the same.

18. Let 𝐻 be a group acting on a set 𝐴. Prove that the relation ∼ on 𝐴 defined by

𝑎 ∼ 𝑏 if and only if 𝑎 = ℎ𝑏 for some ℎ ∈ 𝐻

is an equivalence relation. (For each 𝑥 ∈ 𝐴 the equivalence class of 𝑥 under ∼ is called the orbit of 𝑥 under
the action of 𝐻. The orbits under the action of 𝐻 partition the set 𝐴.)



Proof. To prove that ∼ is an equivalence relation we need to show that that it is reflexive, symmetric, and
transitive.

Let ℎ, ℎ−1 be elements in 𝐻, then

reflexive: If 𝑎 ∼ 𝑎, then
𝑎 = ℎ𝑎

Therefore, ∼ is reflexive.

symmetric: If 𝑎 ∼ 𝑏, then
𝑎 = ℎ𝑏 ⟹ ℎ−1𝑎 = 𝑏 ⟹ 𝑏 ∼ 𝑎.

Therefore, ∼ is symmetric.

transitive: If 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐 then,

𝑎 = ℎ𝑏 and 𝑏 = ℎ𝑐
so that

𝑎 = ℎ(ℎ𝑐) ⟹ 𝑎 = ℎ2𝑐 ⟹ 𝑎 ∼ 𝑐.

Therefore, ∼ is an equivalence relation.

19. Let 𝐻 be a subgroup (cf. Exercise 26 of Section 1) of the finite group 𝐺 and let 𝐻 act on 𝐺 (here 𝐴 + 𝐺)
by left multiplication. Let 𝑥 ∈ 𝐺 and let O be the orbit of 𝑥 under the action of 𝐻. Prove that the map

𝐻 → O defined by ℎ ↦ ℎ𝑥

is a bijection (hence all orbits have cardinality |𝐻|). From this and the preceding exercise deduce Lagrange’s
Theorem:

if 𝐺 is a finite group and 𝐻 is a subgroup of 𝐺 then |𝐻| divides |𝐺|.

Proof. Let us denote the map ℎ ↦ ℎ𝑥 as 𝜑.

To show that it is a bijection we need to show that it is injective and surjective.

injective:

𝜑(ℎ1) = 𝜑(ℎ2)
ℎ1𝑥 = ℎ2𝑥

ℎ1𝑥𝑥−1 = ℎ2𝑥𝑥−1

ℎ1 = ℎ2

Therefore, 𝜑 is injective.

surjective: Let 𝑜 = ℎ𝑥 ∈ O. Then, we know that ℎ = 𝑜𝑥−1 and

𝜑(ℎ) = 𝜑(𝑜𝑥−1) = 𝑜𝑥−1𝑥 = 𝑜𝑥

Therefore, 𝜑 is surjective.

Since 𝜑 is a bijection, all orbits have the same cardinality as |𝐻|. Since orbits are for all 𝑥 ∈ 𝐺 and since orbits
are an equivalence relation from Exercise 18, the orbits under the action of 𝐻 partition the set 𝐺. Therefore
we must have that |𝐺| = 𝑛|𝐻|, where 𝑛 is the number of orbits that partition 𝐺. Since this is the equation for
|𝐻| ∣ |𝐺| we do indeed see that |𝐻| divides |𝐺|.



20. Show that the group of rigid motions of a tetrahedron is isomorphic to a subgroup (cf. Exercise 26 of
Section 1) of 𝑆4.

Proof. The total amount of rigid motions for a tetrahedron is 12 [Exercise 9 of Section 2].

To show that these rigid motions are isomorphic to a subgroup of 𝑆4 we can show there is subgroup which
consists of these rigid motions. First, for a tetrahedron there are 4 axes of rotation through the center of a
face and the opposite side vertex which give 8 permutations. Second, there are 3 axes of rotation through
the center of opposing edges which give 3 permutations. These rotations, coupled with the identity rotation
gives us 12 rigid motions. Now let’s see what rigid motions map to which permutations of 𝑆4:

The permutations about the center of a face and opposite side vertex are: (1 2 3), (1 3 2), (2 3 4), (2 4 3), (1
3 4), (1 4 3), (1 2 4), (1 4 2)

The permutations about the centers of opposing edges are: (1 4)(2 3), (1 3)(2 4), (1 2)(3 4)

Thus, the group of rigid motions are:

{1, (1 2 3), (1 3 2), (2 3 4), (2 4 3), (1 3 4), (1 4 3), (1 2 4), (1 4 2), (1 4)(2 3), (1 3)(2 4), (1 2)(3 4)}

Therefore, the group of rigid motions of a tetrahedron is isomorphic to a subgroup of 𝑆4.

21. Show that the group of rigid motions of a cube is isomorphic to 𝑆4. [This group acts on the set of four
pairs of opposite vertices.]

Proof. The total amount of rigid motions for a cube is 24 [Exercise 10 of Section 2].

To show that these rigid motions are isomorphic to 𝑆4 we can show that the rigid motions are all of the
permutations of 𝑆4 where we will use the permutation on the 4 pairs of opposing vertices. Let us label
them (𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3), (𝑎4, 𝑏4), where all of the 𝑎𝑖 are on a single face and where all of the 𝑏𝑖 are all
on the opposite face. First, for a cube there are 3 axes of rotation through the centers of opposing faces
which give 9 rotations. Second, there are 4 axes of rotation through the opposing vertices (𝑎𝑖, 𝑏𝑖) which
gives us 8 rotations. Third, there are 6 axes of rotation through the center of opposing edges which give 6
rotations. These rotations, coupled with the identity rotation gives us 24 rigid motions. Now let’s see what
rigid motions map to which permutations of 𝑆4:

Let 1 = (𝑎1, 𝑏1), 2 = (𝑎2, 𝑏2), 3 = (𝑎3, 𝑏3), 4 = (𝑎4, 𝑏4).

The permutations about the center of opposing faces are: (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 2 4 3), (1 4)(2 3),
(1 3 4 2), (1 4 2 3), (1 2)(3 4), (1 3 2 4)

The permutations about opposing vertices are: (2 3 4), (2 4 3), (1 3 4), (1 4 3), (1 2 4), (1 4 2), (1 3 2), (1 2 3)

The permutations about the centers of opposing edges are: (1 3), (2 4), (1 4), (2 3), (1 2), (3 4)

Therefore, including the identity rotation, the group of rigid motions of a cube are all of 𝑆4 and thus they
are obviously isomorphic.

22. Show that the group of rigid motions of an octahedron is isomorphic to a subgroup (cf. Exercise 26 of
Section 1) of 𝑆4. [This group acts on the set of four pairs of opposite faces.] Deduce that the groups of rigid
motions of a cube and an octahedron are isomorphic. (These groups are isomorphic because these solids
are “dual” — see Introduction to Geometry by H. Coxeter, Wiley, 1961. We shall see later that the groups of
rigid motions of the dodecahedron and icosahedron are isomorphic as well — these solids are also dual.)



Proof. Let us denote the 4 opposite pairs of faces of the octahedron as (𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3), (𝑎4, 𝑏4).

To show that these rigid motions are isomorphic to a subgroup of 𝑆4 we can show there is subgroup which
consists of these rigid motions. We will use the permutation on the 4 pairs of opposing faces. Let us label
them (𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3), (𝑎4, 𝑏4), where all of the 𝑎𝑖 are on a single pyramid and where all of the 𝑏𝑖 are
all on the opposite pyramid. First, for an octahedron there are 3 axes of rotation through the centers of
opposing vertices which give 9 rotations. Second, there are 4 axes of rotation through the opposing faces
(𝑎𝑖, 𝑏𝑖) which gives us 8 rotations. Third, there are 6 axes of rotation through the center of opposing edges
which give 6 rotations. These rotations, coupled with the identity rotation gives us 24 rigid motions. Now
let’s see what rigid motions map to which permutations of 𝑆4:

Let 1 = (𝑎1, 𝑏1), 2 = (𝑎2, 𝑏2), 3 = (𝑎3, 𝑏3), 4 = (𝑎4, 𝑏4).

The permutations about the center of opposing vertices are: (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 2 4 3), (1 4)(2
3), (1 3 4 2), (1 4 2 3), (1 2)(3 4), (1 3 2 4)

The permutations about opposing faces are: (2 3 4), (2 4 3), (1 3 4), (1 4 3), (1 2 4), (1 4 2), (1 3 2), (1 2 3)

The permutations about the centers of opposing edges are: (1 3), (2 4), (1 4), (2 3), (1 2), (3 4)

Therefore, including the identity rotation, the group of rigid motions of an octahedron are all of 𝑆4 and
thus they are obviously isomorphic. Since the group of rigid motions of a cube is also isomorphic to 𝑆4, we
therefore have that the group of rigid motions of a cube and octahedron are isomorphic.

23. Explain why the action of the group of rigid motions of a cube on the set of three pairs of opposite faces
is not faithful. Find the kernel of this action.

Proof. The group of rigid motions of a cube on the set of three pairs of opposite faces is not faithful because
there are multiple rotations that map to the identity element. For example, the rotations about the axes
through the center of the faces all have order 2. Let us denote these rotations about the three different axes
as 𝑟1, 𝑟2, 𝑟3. That is,

|𝑟1| = |𝑟2| = |𝑟3| = 2
Therefore, the kernel of this action is {1, 𝑟2

1, 𝑟2
2, 𝑟2

3}.


