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Chapter 2 - Subgroups

Exercises:

2.1 DEFINITION AND EXAMPLES

Let 𝐺 be a group.

1. In each of (a)-(e) prove that the specified subset is a subgroup of the given group:

Let us denote the subset of the given form as 𝐻.

(a) the set of complex numbers of the form 𝑎 + 𝑎𝑖, 𝑎 ∈ ℝ (under addition)

Proof. 𝐻 is non-empty as we can let 𝑎 = 0 ⟹ 0 + 0𝑖 = 0, the identity element.

Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥 = 𝑎 + 𝑎𝑖, 𝑦 = 𝑏 + 𝑏𝑖. Then 𝑥 − 𝑦 = (𝑎 + 𝑎𝑖) − (𝑏 + 𝑏𝑖) = (𝑎 − 𝑏) + (𝑎 − 𝑏)𝑖, which
is also in 𝐻.

Therefore, 𝐻 is a subgroup of the complex numbers.

(b) the set of complex numbers of absolute value 1, i.e., the unit circle in the complex plane (under multi-
plication)

Proof. 𝐻 is non-empty as 1 + 0𝑖 = 1 ⟹ |1 + 0𝑖| = 1.

Let 𝑥, 𝑦 ∈ 𝐻 so that 𝑥𝑦−1 ⟹ |𝑥𝑦−1| = |𝑥||𝑦−1| = |1||1| = 1. Therefore, 𝑥𝑦−1 ∈ 𝐻.

Therefore, 𝐻 is a subgroup of the complex numbers.

(c) for fixed 𝑛 ∈ ℤ+ the set of rational numbers whose denominators divide 𝑛 (under addition)

Proof. 𝐻 is non-empty as 1 ∈ ℚ and 1 ∣ 𝑛.

Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥 = 𝑎/𝑏, 𝑦 = 𝑐/𝑑 so that 𝑏 ∣ 𝑛 and 𝑑 ∣ 𝑛. Then we must have that 𝑏 = 𝑛/𝑒, 𝑑 = 𝑛/𝑓
for some 𝑒, 𝑓 ∈ ℤ+.

Therefore,
𝑥𝑦−1 ⟹ 𝑥 − 𝑦 ⟹ 𝑎

𝑏 − 𝑐
𝑑 = 𝑎𝑒

𝑛 − 𝑏𝑓
𝑛 = 𝑎𝑒 − 𝑏𝑓

𝑛
and since 𝑛 ∣ 𝑛 we see that this denominator obviously divides 𝑛 so this rational number must be in 𝐻.

Therefore, 𝐻 is a subgroup of the rational numbers.

(d) for fixed 𝑛 ∈ ℤ+ the set of rational numbers whose denominators are relatively prime to 𝑛 (under
addition)

Proof. 𝐻 is non-empty as 1 ∈ ℚ and 1 is relatively prime to any 𝑛.

Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥 = 𝑎/𝑏, 𝑦 = 𝑐/𝑑 so that gcd(𝑏, 𝑛) = gcd(𝑑, 𝑛) = 1 ⟹ gcd(𝑏𝑑, 𝑛) = 1.



Therefore,
𝑎
𝑏 − 𝑐

𝑑 = 𝑎𝑑 − 𝑐𝑏
𝑏𝑑

and since gcd(𝑏𝑑, 𝑛) = 1, we have that the denominator of this rational number is relatively prime with
𝑛 so this rational number must be in 𝐻.

Therefore, 𝐻 is a subgroup of the rational numbers.

(e) the set of nonzero real numbers whose square is a rational number (under multiplication)

Proof. 𝐻 is non-empty as any nonzero squared integer is an integer and any integer is a rational number.

Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥2 = 𝑎/𝑏, 𝑦2 = 𝑐/𝑑. Then,

𝑥𝑦−1 ⟹ (𝑥𝑦−1)2 = 𝑥2𝑦−2 = 𝑥2(𝑦2)−1 = 𝑎
𝑏 ⋅ ( 𝑐

𝑑)
−1

= 𝑎𝑑
𝑏𝑐

which is a rational number so this nonzero real number is in 𝐻.

Therefore, 𝐻 is a subgroup of the real numbers.

2. In each of (a)-(e) prove that the specified subset is not a subgroup of the given group:

Let us denote the subset of the given form as 𝐻.

(a) the set of 2-cycles in 𝑆𝑛 for 𝑛 ≥ 3

Proof. Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥 = (1 2) and 𝑦 = (1 3). Then 𝑥𝑦−1 ⟹ (1 2)(3 1) = (1 3 2) ∉ 𝐻.

Therefore, 𝐻 is not a subgroup of 𝑆𝑛 for 𝑛 ≥ 3.

(b) the set of reflections in 𝐷2𝑛 for 𝑛 ≥ 3

Proof. A reflection in the dihedral group 𝐷2𝑛 has the relation that 𝑠2 = 1. That is, when we apply the
same reflection twice, we get the identity element.

However, we can have different reflections for 𝑛 ≥ 3. A reflection will interchange a pair of points on
the 𝑛-gon to create a 2-cycle within the reflection’s cycle decomposition. And similar to (a) above, we
see that the composition of 2-cycles that share an element, will result in a permutation that is not a
2-cycle and therefore does not belong to the group of reflections.

For an explicit example of this note that when 𝑛 = 3 we have an equilateral triangle that has the reflec-
tions: (1 2),(1 3),(2 3)

These are the same 2-cycles we used in part (a) above and with the same reasoning we see that (1 3 2)
∉ 𝐻.

Therefore, 𝐻 is not a subgroup of 𝐷2𝑛 for 𝑛 ≥ 3.

(c) for 𝑛 a composite integer > 1 and 𝐺 a group containing an element of order 𝑛, the set

{𝑥 ∈ 𝐺 ∣ |𝑥| = 𝑛} ∪ {1}

Proof. Let 𝑥, 𝑦 ∈ 𝐻. Since 𝑛 is composite we can write it as 𝑛 = 𝑎𝑏, where 𝑎 ≤ 𝑏 < 𝑛.

Suppose 𝑥𝑦−1 ∈ 𝐻

(𝑥𝑦−1)𝑛 = 1 = 𝑥𝑛𝑦−𝑛 [property of the group]



= 1𝑦−𝑛

= 𝑦−𝑛

= 𝑦−𝑎𝑏

= (𝑦−𝑎)𝑏

= ((𝑦−𝑎)𝑏)−𝑏 [(1)−𝑏 = 1]
= 𝑦−𝑎

= (𝑦−1)𝑎

Thus, (𝑦−1)𝑎 = 1, which is contradiction as the group elements of 𝐺 have order 𝑛. Therefore, 𝑥𝑦−1 ∉ 𝐻
and 𝐻 is not a subgroup of 𝐺.

(d) the set of (positive and negative) odd integers in ℤ together with 0

Proof. Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥 = 5, 𝑦 = 3 then 𝑥𝑦−1 ⟹ 𝑥 − 𝑦 ⟹ 5 − 3 = 2 ∉ 𝐻.

Therefore, this set is not a subgroup of ℤ.

(e) the set of real numbers whose square is a rational number (under addition)

Proof. Let 𝑥, 𝑦 ∈ 𝐻 such that 𝑥2 = 𝑎/𝑏, 𝑦2 = 𝑐/𝑑. Then, 𝑥𝑦−1 ⟹ 𝑥 − 𝑦 so that

(𝑥 − 𝑦)2 = 𝑥2 − 2𝑥𝑦 + 𝑦2 = 𝑎
𝑏 − 2𝑥𝑦 + 𝑐

𝑑
but

𝑥 = √𝑎
𝑏 and 𝑦 = √ 𝑐

𝑑

which means the square of 𝑥 − 𝑦 is not a rational number.

Therefore, 𝐻 is a not a subgroup of the real numbers.

3. Show that the following subsets of the dihedral group 𝐷8 are actually subgroups:

For dihedral groups we have the relations 𝑠2 = 1, 𝑟𝑠 = 𝑠𝑟−1.

Let us denote the subset of the given form as 𝐻.

(a) {1, 𝑟2, 𝑠, 𝑠𝑟2}

Proof. Obviously 𝐻 is non-empty.

𝑛 = 4 for 𝐷8 so 𝑟4 = 1.

Each of the elements are their own inverses:

1 ⋅ 1 = 1
𝑟2 ⋅ 𝑟2 = 𝑟4 = 1

𝑠 ⋅ 𝑠 = 𝑠2 = 1 [𝑠2 = 1]
𝑠𝑟2 ⋅ 𝑠𝑟2 = 𝑠𝑟2𝑠𝑟2

= 𝑠𝑟(𝑟𝑠)𝑟𝑟
= 𝑠𝑟𝑠𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠(𝑟𝑠)𝑟
= 𝑠𝑠𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]



= 𝑠2 = 1 [𝑠2 = 1]

Thus, 𝐻 is closed under inverses.

For multiplication we can look at the combinations:

𝑟2 ⋅ 𝑠 = 𝑟(𝑟𝑠)
= (𝑟𝑠)𝑟−1 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟−1𝑟−1 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟−2

= 𝑠𝑟2 [𝑟2 is its own inverse]
𝑟2 ⋅ 𝑠𝑟2 = 𝑟(𝑟𝑠)𝑟𝑟

= (𝑟𝑠)𝑟−1𝑟𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= (𝑟𝑠)𝑟
= 𝑠𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠

𝑠 ⋅ 𝑟2 = 𝑠𝑟2

𝑠 ⋅ 𝑠𝑟2 = 𝑠2𝑟2

= 𝑟2 [𝑠2 = 1]
𝑠𝑟2 ⋅ 𝑠 = 𝑠𝑟(𝑟𝑠)

= 𝑠(𝑟𝑠)𝑟−1 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑠𝑟−1𝑟−1 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠2𝑟−2 [𝑠2 = 1]
= 𝑟2 [𝑟2 is its own inverse]

𝑠𝑟2 ⋅ 𝑟2 = 𝑠𝑟4

= 𝑠 [𝑟4 = 1]

Thus, 𝐻 is closed under multiplication.

Therefore, 𝐻 is a subgroup of 𝐷8.

(b) {1, 𝑟2, 𝑠𝑟, 𝑠𝑟3}

Proof. Obviously 𝐻 is non-empty.

𝑛 = 4 for 𝐷8 so 𝑟4 = 1.

Each of the elements are their own inverses:

1 ⋅ 1 = 1
𝑟2 ⋅ 𝑟2 = 𝑟4 = 1
𝑠𝑟 ⋅ 𝑠𝑟 = 𝑠(𝑟𝑠)𝑟

= 𝑠𝑠𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠2 = 1 [𝑠2 = 1]

𝑠𝑟3 ⋅ 𝑠𝑟3 = 𝑠𝑟3𝑠𝑟3

= 𝑠𝑟𝑟(𝑟𝑠)𝑟𝑟𝑟
= 𝑠𝑟𝑟𝑠𝑟−1𝑟𝑟𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟(𝑟𝑠)𝑟𝑟



= 𝑠𝑟𝑠𝑟−1𝑟𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠(𝑟𝑠)𝑟
= 𝑠𝑠𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠2 = 1 [𝑠2 = 1]

Thus, 𝐻 is closed under inverses.

For multiplication we can look at the combinations:

𝑟2 ⋅ 𝑠𝑟 = 𝑟(𝑟𝑠)𝑟
= (𝑟𝑠)𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟−1𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟−2𝑟
= 𝑠𝑟3 [𝑟2 is its own inverse]

𝑟2 ⋅ 𝑠𝑟3 = 𝑟(𝑟𝑠)𝑟𝑟𝑟
= (𝑟𝑠)𝑟−1𝑟𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟−2𝑟3 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠𝑟5 [𝑟2 is its own inverse]
= 𝑠𝑟 [𝑟4 = 1]

𝑠𝑟 ⋅ 𝑟2 = 𝑠𝑟3

𝑠𝑟 ⋅ 𝑠𝑟3 = 𝑠(𝑟𝑠)𝑟3

= 𝑠𝑠𝑟−1𝑟3 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠2𝑟2

= 𝑟2 [𝑠2 = 1]
𝑠𝑟3 ⋅ 𝑟2 = 𝑠𝑟5

= 𝑠𝑟4𝑟
= 𝑠𝑟 [𝑟4 = 1]

𝑠𝑟3 ⋅ 𝑠𝑟 = 𝑠𝑟𝑟(𝑟𝑠)𝑟
= 𝑠𝑟(𝑟𝑠)𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠(𝑟𝑠)𝑟−1𝑟−1𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑠2𝑟−3𝑟 [𝑟𝑠 = 𝑠𝑟−1]
= 𝑟−2

= 𝑟2 [𝑟2 is its own inverse]

Thus, 𝐻 is closed under multiplication.

Therefore, 𝐻 is a subgroup of 𝐷8.

4. Give an explicit example of a group 𝐺 and an infinite subset 𝐻 of 𝐺 that is closed under the group
operation but is not a subgroup of 𝐺

Proof. Let 𝐺 be ℤ and let 𝐻 be the infinite set ℤ+ under addition. 𝐻 is closed under addition but it does not
contain the identity nor additive inverses. Therefore, 𝐻 is not a subgroup of 𝐺.

5. Prove that 𝐺 cannot have a subgroup 𝐻 with |𝐻| = 𝑛 − 1, where 𝑛 = |𝐺| > 2.



Proof. From Exercise 19 of Section 1.7, we know that if 𝐺 is a finite group and 𝐻 is a subgroup of 𝐺, then
|𝐻| divides |𝐺|. Since 𝑛 = |𝐺| > 2 we know that 𝐺 is finite. In order to have a subgroup 𝐻 with order 𝑛 − 1
would mean that 𝑛 − 1 ∣ 𝑛 and this can only be true if 𝑛 = 2.

6. Let 𝐺 be an abelian group. Prove that {𝑔 ∈ 𝐺 ∣ |𝑔| < ∞} is a subgroup of 𝐺 (called the torsion subgroup of
𝐺). Give an explicit example where this set is not a subgroup when 𝐺 is non-abelian.

Proof. Let us denote the subset of the above form as 𝐻.

𝐻 is non-empty as it contains the identity element.

If 𝑥, 𝑦 ∈ 𝐻 then we know that the orders of 𝑥 and 𝑦 are finite. Let |𝑥| = 𝑎 and |𝑦| = 𝑏, for some positive
integers 𝑎, 𝑏. Then, since |𝑦| = |𝑦−1| = 𝑏 we see that

𝑥𝑦−1 ⟹ (𝑥𝑦−1)lcm(𝑎,𝑏) = 𝑥lcm(𝑎,𝑏)𝑦− lcm(𝑎,𝑏) = 1 ⟹ |𝑥𝑦−1| = lcm(𝑎, 𝑏)

Therefore, 𝐻 is a subgroup of 𝐺.

For an explicit example where this subset is not a subgroup when 𝐺 is non-abelian let’s have 𝐻 = 𝐺𝐿𝑛(ℚ)
and

𝑥 = (0 1
1 0)

𝑦 = (0 2
1
2 0)

𝑦−1 = 1
−1 ( 0 −2

− 1
2 0 ) = (0 2

1
2 0) = 𝑦

𝑥2 = (1 0
0 1) = 1

𝑦2 = (1 0
0 1) = 1

However , 𝑥𝑦−1 has infinite order:

(𝑥𝑦−1)2 = (
1
4 0
0 4)

(𝑥𝑦−1)3 = (
1
8 0
0 8)

... etc.

7. Fix some 𝑛 ∈ ℤ with 𝑛 > 1. Find the torsion subgroup (cf. the previous exercise) of ℤ × (ℤ/𝑛ℤ). Show
that the set of elements of infinite order together with the identity is not a subgroup of this direct product.

The torsion subgroup is the set of elements that have finite order. For ℤ × (ℤ/𝑛ℤ) this is the additive
subgroup

{(0, 𝑖) ∣ 𝑖 ∈ {0, 1, … , 𝑛 − 1}}
where the identity element is (0, 0).

The set of elements of infinite order together with the identity is not a subgroup because we can see that it
is not closed under addition as (19, 1) + (−19, 0) = (0, 1), which is an element of finite order.

8. Let 𝐻 and 𝐾 be subgroups of 𝐺. Prove that 𝐻 ∪ 𝐾 is a subgroup if and only if either 𝐻 ⊆ 𝐾 or 𝐾 ⊆ 𝐻.



Proof. If 𝐻 ∪ 𝐾 ≤ 𝐺, then let 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐾.

𝑥 ∈ 𝐻 ⟹ 𝑥 ∈ 𝐻 ∪ 𝐾
𝑦 ∈ 𝐾 ⟹ 𝑦 ∈ 𝐻 ∪ 𝐾

⟹ 𝑥𝑦 ∈ 𝐻 ∪ 𝐾
⟹ 𝑥𝑦 ∈ 𝐻 or 𝑥𝑦 ∈ 𝐾

If 𝑥𝑦 ∈ 𝐻, then 𝑦 ∈ 𝐻 ⟹ 𝐾 ⊆ 𝐻
If 𝑥𝑦 ∈ 𝐾, then 𝑥 ∈ 𝐾 ⟹ 𝐻 ⊆ 𝐾

Therefore, either 𝐾 ⊆ 𝐻 or 𝐻 ⊆ 𝐾.

Conversely, if either 𝐾 ⊆ 𝐻 or 𝐻 ⊆ 𝐾, then let 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐾.

If 𝐻 ⊆ 𝐾 then 𝑥𝑦 ∈ 𝐾 ⟹ 𝑥𝑦 ∈ 𝐻 ∪ 𝐾
If 𝐾 ⊆ 𝐻 then 𝑥𝑦 ∈ 𝐻 ⟹ 𝑥𝑦 ∈ 𝐻 ∪ 𝐾

Thus, 𝐻 ∪ 𝐾 is closed under multiplication.

Since 𝐻 and 𝐾 are groups, the same arguments can be used for inverses and the identity. Thus, 𝐻 ∪ 𝐾 is a
subgroup of 𝐺.

Therefore, 𝐻 ∪ 𝐾 is a subgroup if and only if either 𝐻 ⊆ 𝐾 or 𝐾 ⊆ 𝐻.

9. Let 𝐺 = 𝐺𝐿𝑛(𝐹), where 𝐹 is any field. Define

𝑆𝐿𝑛(𝐹) = {𝐴 ∈ 𝐺𝐿𝑛(𝐹) ∣ 𝑑𝑒𝑡(𝐴) = 1}

(called the special linear group). Prove that 𝑆𝐿𝑛(𝐹) ≤ 𝐺𝐿𝑛(𝐹).

Proof. identity:

The identity element for 𝐺𝐿𝑛𝐹 is the identity matrix for the field 𝐹 and since this is an identity matrix, its
determinant is equal to 1.

Therefore, 𝑆𝐿𝑛(𝐹) contains the identity element.

closed under multiplication:

Let 𝑋, 𝑌 ∈ 𝑆𝐿𝑛(𝐹). For square matrices we know that det(𝐴𝐵) = det(𝐴) ⋅ det(𝐵).

Therefore, det(𝑋𝑌) = det(𝑋) ⋅ det(𝑌) = 1 ⋅ 1 = 1.

Thus, 𝑆𝐿𝑛(𝐹) is closed under multiplication.

closed under inverses:

𝑆𝐿𝑛(𝐹) is also closed under inverses as the determinate for the inverse of square matrix 𝐴 is

1
det(𝐴) ⟹ 1

1 = 1.

Therefore, 𝑆𝐿𝑛(𝐹) ≤ 𝐺𝐿𝑛(𝐹).

10.



(a) Prove that if 𝐻 and 𝐾 are subgroups of 𝐺 then so is their intersection 𝐻 ∩ 𝐾.

Proof. Since 𝐻 and 𝐾 are both subgroups of 𝐺 then properties (1) and (2) of the Subgroup Criterion
hold. Additionally, since 𝐻 and 𝐾 both contain the identity element 𝐻 ∩ 𝐾 must as well.

If 𝑥, 𝑦 ∈ 𝐻 ∩ 𝐾, then 𝑥, 𝑦 are in both 𝐻 and 𝐾. Therefore, their products and inverses must be as well
since they are groups. Thus, 𝐻 ∩ 𝐾 is closed under multiplication and inverses.

Therefore, if 𝐻 and 𝐾 are subgroups of 𝐺 then so is their intersection 𝐻 ∩ 𝐾.

(b) Prove that the intersection of an arbitrary nonempty collection of subgroups of 𝐺 is again a subgroup
of 𝐺 (do not assume the collection is countable).

Proof. In part (a) we proved that the intersection of two subsets is itself a subset of 𝐺. Therefore, if we
take the intersection of this subset with another subset of 𝐺, by the same argument of part (a) above,
we will see that once again we will have a subset of 𝐺.

11. Let 𝐴 and 𝐵 be groups. Prove that the following sets are subgroups of the direct product 𝐴 × 𝐵:

(a) {(𝑎, 1) ∣ 𝑎 ∈ 𝐴}

Proof. Since 𝐴 and 𝐵 are both groups, they both contain the identity element 1. Thus, this set contains
the identity element of 𝐴 × 𝐵 which is the ordered pair (1, 1).

Let 𝑎1, 𝑎2 be elements of this set. Then 𝑎1𝑎−1
2 ⟹ (𝑎1, 1) ⋅ (𝑎−1

2 , 1) = (𝑎1𝑎−1
2 , 1) which is in this set since

𝑎1𝑎−1
2 ∈ 𝐴 as it is a group.

Therefore, this set is a subgroup of 𝐴 × 𝐵.

(b) {(1, 𝑏) ∣ 𝑏 ∈ 𝐵}

Proof. Since 𝐴 and 𝐵 are both groups, they both contain the identity element 1. Thus, this set contains
the identity element of 𝐴 × 𝐵 which is the ordered pair (1, 1).

Let 𝑏1, 𝑏2 be elements of this set. Then 𝑏1𝑏−1
2 ⟹ (1, 𝑏1) ⋅ (1, 𝑏−1

2 ) = (1, 𝑏1𝑏−1
2 ) which is in this set since

𝑏1𝑏−1
2 ∈ 𝐵 as it is a group.

Therefore, this set is a subgroup of 𝐴 × 𝐵.

(c) {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}, where here we assume 𝐵 = 𝐴 (called the diagonal subgroup).

Proof. Since 𝐴 and 𝐵 are both groups, they both contain the identity element 1. Thus, this set contains
the identity element of 𝐴 × 𝐵 which is the ordered pair (1, 1).

Let 𝑎1, 𝑎2 be elements of this set. Then 𝑎1𝑎−1
2 ⟹ (𝑎1, 𝑎1) ⋅ (𝑎−1

2 , 𝑎−1
2 ) = (𝑎1𝑎−1

2 , 𝑎1𝑎−1
2 ) which is in this

set since 𝑎1𝑎−1
2 ∈ 𝐴 as it is a group.

Therefore, this set is a subgroup of 𝐴 × 𝐵.

12. Let 𝐴 be an abelian group and fix some 𝑛 ∈ ℤ. Prove that the following sets are subgroups of 𝐴:

(a) {𝑎𝑛 ∣ 𝑎 ∈ 𝐴}

Proof. Since 1𝑛 = 1 this set contains the identity element.

Let 𝑎1, 𝑎2 be elements of this set. Then if 𝑎1𝑎−1
2 is in this set we must have that 𝑎𝑛

1𝑎−𝑛
2 = (𝑎1𝑎−1

2 )𝑛,
𝑎𝑛

1𝑎−𝑛
2 = 𝑎11𝑎12 ⋯ 𝑎1𝑛𝑎−1

21 𝑎−1
22 ⋯ 𝑎−1

2𝑛



= (𝑎1𝑎−1
2 )1(𝑎1𝑎−1

2 )2 ⋯ (𝑎1𝑎−1
2 )𝑛 = (𝑎1𝑎−1

2 )𝑛

Thus, 𝑎1𝑎−1
2 is in this set since 𝑎1𝑎−1

2 ∈ 𝐴.

Therefore, this set is a subgroup of 𝐴.

(b) {𝑎 ∈ 𝐴 ∣ 𝑎𝑛 = 1}

Proof. Since 1 ∈ 𝐴 and 1𝑛 = 1 this set contains the identity element.

Let 𝑎1, 𝑎2 be elements of this set. Then if 𝑎1𝑎−1
2 is in this set we must have that (𝑎1𝑎−1

2 )𝑛 = 1,

(𝑎1𝑎−1
2 )𝑛 = (𝑎1𝑎−1

2 )1(𝑎1𝑎−1
2 )2 ⋯ (𝑎1𝑎−1

2 )𝑛
= 𝑎11𝑎12 ⋯ 𝑎1𝑛𝑎−1

21 𝑎−1
22 ⋯ 𝑎−1

2𝑛
= 𝑎𝑛

1𝑎−𝑛
2 = 𝑎𝑛

1(𝑎𝑛
2)−1

= 1 ⋅ 1−1 = 1 ⋅ 1 = 1

Thus, 𝑎1𝑎−1
2 is in this set.

Therefore, this set is a subgroup of 𝐴.

13. Let 𝐻 be a subgroup of the additive group of rational numbers with the property that 1/𝑥 ∈ 𝐻 for every
nonzero element 𝑥 of 𝐻. Prove that 𝐻 = 0 or ℚ.

Proof. Since 𝐻 is a subgroup it must contain the additive identity element which is 0.

If 𝐻 ≠ {0} then it contains an element other than the identity element. Let that element be 𝑥. Since 𝑥 is a
rational number we can denote it as 𝑥 = 𝑎

𝑏 for integers 𝑎, 𝑏. Since 𝑥 is nonzero 𝐻 also contains the element
1
𝑥 = 𝑏

𝑎 . Additionally, since 𝐻 is a group it also contains the additive inverses of these elements, −𝑎
𝑏 and −𝑏

𝑎 .

Since 𝐻 is closed under addition we know that there must be an element of the group for adding 𝑎
𝑏 to itself

𝑏 times to give us 𝑏𝑎
𝑏 = 𝑎. Since 𝑎 is an integer, and noting that the same argument is valid for −𝑎

𝑏 , we see
that 𝐻 contains all of ℤ and their inverses (using the property of 𝐻).

Thus, since any rational number can be constructed from combinations of integers and their reciprocals we
see that ℚ ⊆ 𝐻. But 𝐻 ⊆ ℚ so therefore we have 𝐻 = ℚ.

14. Show that {𝑥 ∈ 𝐷2𝑛 ∣ 𝑥2 = 1} is not a subgroup of 𝐷2𝑛 (here 𝑛 ≥ 3).

Proof. Let 𝑥, 𝑦 be elements of the set. To have 𝑥𝑦−1 in the set it must satisfy the condition that (𝑥𝑦−1)2 = 1.
But 𝐷2𝑛 is non-abelian so,

(𝑥𝑦−1)2 = 𝑥𝑦−1𝑥𝑦−1 ≠ 1 if 𝑥 ≠ 𝑦
Therefore, this is not a subgroup of 𝐷2𝑛.

15. Let 𝐻1 ≤ 𝐻2 ≤ ⋯ be an ascending chain of subgroups of 𝐺. Prove that ⋃∞
𝑖=1 𝐻𝑖 is a subgroup of 𝐺.

Proof. Let us denote 𝐻1 ≤ 𝐻2 ≤ ⋯ as 𝐻.

Since 𝐻1 is a group, it must contain the identity element so therefore 𝐻 contains the identity element as well.



Let 𝑥, 𝑦 ∈ 𝐻 so that 𝑥 ∈ 𝐻𝑚 and 𝑦, 𝑦−1 ∈ 𝐻𝑛 for some positive integers 𝑚, 𝑛. Then 𝑥𝑦−1 ∈ 𝐻𝑁 where
𝑁 =max(𝑚, 𝑛), which implies that 𝑥𝑦−1 ∈ 𝐻.

Therefore, 𝐻 is a subgroup of 𝐺.

16. Let 𝑛 ∈ ℤ+ and let 𝐹 be a field. Prove that the set {(𝑎𝑖𝑗) ∈ 𝐺𝐿𝑛(𝐹) ∣ 𝑎𝑖𝑗 = 0 for all 𝑖 > 𝑗} is a subgroup of
𝐺𝐿𝑛(𝐹) (called the group of upper triangular matrices).

Proof. Let us denote {(𝑎𝑖𝑗) ∈ 𝐺𝐿𝑛(𝐹) ∣ 𝑎𝑖𝑗 = 0 as 𝐻𝑛

A matrix that is 1 × 1 is trivially an upper triangular matrix.

Additionally, note that for each step, it is easy to see that the 𝐻𝑛 contains the identity matrix 𝐼𝑛, for all 𝑛, as
it is an upper triangular matrix.

base case: For 𝑛 = 2 let 𝐴, 𝐵 ∈ 𝐻2 such that

𝐴 = (𝑎11 𝑎12
0 𝑎22

) 𝐵 = (𝑏11 𝑏12
0 𝑏22

)

The inverse of 𝐵 is
𝐵−1 = 1

𝑏11𝑏22
(𝑏22 −𝑏12

0 𝑏11
)

Thus, 𝐻2 is closed under inverses.

𝐻2 is also closed under multiplication as

𝐴 ⋅ 𝐵 = (𝑎11 𝑎12
0 𝑎22

) (𝑏11 𝑏12
0 𝑏22

) = (𝑎11𝑏11 𝑎11𝑏12 + 𝑎12𝑏22
0 𝑎22𝑏22

)

is an upper triangular matrix.

Therefore, 𝐻2 is a subgroup of 𝐺𝐿2(𝐹).

induction hypothesis: For 𝑛 = 𝑘 suppose that 𝐻𝑘 is a subgroup of 𝐺𝐿𝑘(𝐹).

induction step: For 𝑛 = 𝑘 + 1 an upper triangular matrix can be broken up as an upper block-diagonal
matrix

⎡⎢⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1(𝑘+1)
0 𝑎22 ⋯ 𝑎2(𝑘+1)
0 0 ⋱ ⋯
0 0 ⋯ 𝑎(𝑘+1)(𝑘+1)

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢⎢
⎣

𝐴𝑘

⎡⎢⎢⎢
⎣

𝑎1(𝑘+1)
𝑎2(𝑘+1)

⋮
𝑎𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

[0 0 ⋯ 0] 𝑎(𝑘+1)(𝑘+1)

⎤⎥⎥⎥⎥⎥
⎦

Let 𝐴, 𝐵 ∈ 𝐻𝑘+1 such that

𝐴 =
⎡⎢⎢⎢⎢⎢
⎣

𝐴𝑘

⎡⎢⎢⎢
⎣

𝑎1(𝑘+1)
𝑎2(𝑘+1)

⋮
𝑎𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

[0 0 ⋯ 0] 𝑎(𝑘+1)(𝑘+1)

⎤⎥⎥⎥⎥⎥
⎦

𝐵 =
⎡⎢⎢⎢⎢⎢
⎣

𝐵𝑘

⎡⎢⎢⎢
⎣

𝑏1(𝑘+1)
𝑏2(𝑘+1)

⋮
𝑏𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

[0 0 ⋯ 0] 𝑏(𝑘+1)(𝑘+1)

⎤⎥⎥⎥⎥⎥
⎦

The inverse of 𝐵 is

𝐵−1 = 1
𝐵𝑘𝑏(𝑘+1)(𝑘+1)

⎡⎢⎢⎢⎢⎢
⎣

𝑏(𝑘+1)(𝑘+1)

⎡⎢⎢⎢
⎣

𝑏1(𝑘+1)
𝑏2(𝑘+1)

⋮
𝑏𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

[0 0 ⋯ 0] 𝐵𝑘

⎤⎥⎥⎥⎥⎥
⎦



Thus, 𝐻𝑘+1 is closed under inverses (since the block-diagonal matrix can be converted back to an upper
triangular matrix).

𝐻𝑘+1 is also closed under multiplication as

𝐴 ⋅ 𝐵 =
⎡⎢⎢⎢⎢⎢
⎣

𝐴𝑘

⎡⎢⎢⎢
⎣

𝑎1(𝑘+1)
𝑎2(𝑘+1)

⋮
𝑎𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

[0 0 ⋯ 0] 𝑎(𝑘+1)(𝑘+1)

⎤⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

𝐵𝑘

⎡⎢⎢⎢
⎣

𝑏1(𝑘+1)
𝑏2(𝑘+1)

⋮
𝑏𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

[0 0 ⋯ 0] 𝑏(𝑘+1)(𝑘+1)

⎤⎥⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢⎢
⎣

𝐴𝑘𝐵𝑘 𝐴𝑘

⎡⎢⎢⎢
⎣

𝑏1(𝑘+1)
𝑏2(𝑘+1)

⋮
𝑏𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

+
⎡⎢⎢⎢
⎣

𝑎1(𝑘+1)
𝑎2(𝑘+1)

⋮
𝑎𝑘(𝑘+1)

⎤⎥⎥⎥
⎦

𝑏(𝑘+1)(𝑘+1)

[0 0 ⋯ 0] 𝑎(𝑘+1)(𝑘+1)𝑏(𝑘+1)(𝑘+1)

⎤⎥⎥⎥⎥⎥
⎦

is an upper triangular matrix (since the block-diagonal matrix can be converted back to an upper triangular
matrix).

Therefore, 𝐻𝑘+1 is a subgroup of 𝐺𝐿𝑘+1(𝐹) and by induction 𝐻𝑛 is a subgroup of 𝐺𝐿𝑛(𝐹) for all 𝑛.

17. Let 𝑛 ∈ ℤ+ and let 𝐹 be a field. Prove that the set {(𝑎𝑖𝑗) ∈ 𝐺𝐿𝑛(𝐹) ∣ 𝑎𝑖𝑗 = 0 for all 𝑖 > 𝑗, and 𝑎𝑖𝑖 = 1 for all
𝑖} is a subgroup of 𝐺𝐿𝑛(𝐹).

Proof. Using the same proof as Exercise 16 but this timewith the added condition that the diagonal elements
must be equal to 1.

Obviously the identity matrix satisfies this and it is easy to see that for 𝑛 = 2 it does as well by looking at
the inverse and the multiplication portions of the proof.

For the induction hypothesis we assume it holds for 𝑛 = 𝑘. Then in the induction step, we can see it holds for
inverses and multiplication of matrices from the induction hypothesis, so that it indeed holds for 𝑛 = 𝑘 + 1
and therefore by induction, all of 𝑛.

2.2 CENTRALIZERS AND NORMALIZERS, STABILIZERS AND KERNELS

1. Prove that C𝐺(𝐴) = {𝑔 ∈ 𝐺 ∣ 𝑔−1𝑎𝑔 = 𝑎 for all 𝑎 ∈ 𝐴}.

Proof. The definition of C𝐺(𝐴) is C𝐺(𝐴) = {𝑔 ∈ 𝐺 ∣ 𝑔𝑎𝑔−1 = 𝑎 for all 𝑎 ∈ 𝐴}.

𝑔𝑎𝑔−1 = 𝑎
𝑔𝑎𝑔−1𝑔 = 𝑎𝑔

𝑔𝑎 = 𝑎𝑔
𝑔−1𝑔𝑎 = 𝑔−1𝑎𝑔

𝑎 = 𝑔−1𝑎𝑔

Therefore, C𝐺(𝐴) = {𝑔 ∈ 𝐺 ∣ 𝑔−1𝑎𝑔 = 𝑎 for all 𝑎 ∈ 𝐴}.

2. Prove that C𝐺(Z(𝐺)) = 𝐺 and deduce that N𝐺(Z(𝐺)) = 𝐺.



Proof. The definition for Z(𝐺) is Z(𝐺) = {𝑔 ∈ 𝐺 ∣ 𝑔𝑥 = 𝑥𝑔 for all 𝑥 ∈ 𝐺}.

Therefore, all the elements of Z(𝐺) commute with all the elements of 𝐺.

The definition of C𝐺(𝐴) is the elements of 𝐺 that commute with all the elements of the subset 𝐴. If the subset
is Z(𝐺), we already know that all the elements of Z(𝐺) commute with all the elements of 𝐺. Therefore,
C𝐺(Z(𝐺)) = 𝐺.

The elements of N𝐺(𝐴) are the elements of 𝐺 that commute either point wise or to another element of the
set 𝐴. For Z(𝐺) we already know that all of the elements of 𝐺 commute point wise with all the elements of
Z(𝐺), therefore N𝐺(Z(𝐺)) = 𝐺.

3. Prove that if 𝐴 and 𝐵 are subsets of 𝐺 with 𝐴 ⊆ 𝐵 then C𝐺(𝐵) is a subgroup of C𝐺(𝐴).

Proof. Centralizers are groups, as proved in the text, so we must show that C𝐺(𝐵) ⊆ C𝐺(𝐴).

Let 𝑔 ∈ C𝐺(𝐵), then

𝑔𝑏𝑔−1 = 𝑏 for all 𝑏 ∈ 𝐵
𝑔𝑏𝑔−1 = 𝑏 for all 𝑏 ∈ 𝐴 [𝐴 ⊆ 𝐵]
𝑔 ∈ C𝐺(𝐴).

Thus, C𝐺(𝐵) ⊆ C𝐺(𝐴).

Therefore, C𝐺(𝐵) ≤ C𝐺(𝐴).

4. For each of 𝑆3, 𝐷8, and 𝑄8 compute the centralizers of each element and find the center of each group.
Does Lagrange’s Theorem (Exercise 19 in Section 1.7) simplify your work?

𝑆3 = {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
C𝑆3

(1) = 𝑆3

C𝑆3
((1 2)) = {1, (1 2)}

C𝑆3
((1 3)) = {1, (1 3)}

C𝑆3
((2 3)) = {1, (2 3)}

C𝑆3
((1 2 3)) = {1, (1 2 3), (1 3 2)}

C𝑆3
((1 3 2)) = {1, (1 2 3), (1 3 2)}

Z(𝑆3) = 1
𝐷8 = {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3}

C𝐷8
(1) = 𝐷8

C𝐷8
(𝑟) = {1, 𝑟, 𝑟2, 𝑟3}

C𝐷8
(𝑟2) = {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3}

C𝐷8
(𝑟3) = {1, 𝑟, 𝑟2, 𝑟3}

C𝐷8
(𝑠) = {1, 𝑟2, 𝑠, 𝑠𝑟2}

C𝐷8
(𝑠𝑟) = {1, 𝑟2, 𝑠𝑟, 𝑠𝑟3}

C𝐷8
(𝑠𝑟2) = {1, 𝑟2, 𝑠, 𝑠𝑟2}

C𝐷8
(𝑠𝑟3) = {1, 𝑟2, 𝑠𝑟, 𝑠𝑟3}

Z(𝐷8) = {1, 𝑟2}



𝑄8 = {1, −1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘}
C𝑄8

(1) = 𝑄8

C𝑄8
(−1) = 𝑄8

C𝑄8
(𝑖) = {1, −1, 𝑖, −𝑖}

C𝑄8
(−𝑖) = {1, −1, 𝑖, −𝑖}

C𝑄8
(𝑗) = {1, −1, 𝑗, −𝑗}

C𝑄8
(−𝑗) = {1, −1, 𝑗, −𝑗}

C𝑄8
(𝑘) = {1, −1, 𝑘, −𝑘}

C𝑄8
(−𝑘) = {1, −1, 𝑘, −𝑘}

Z(𝑄8) = {1, −1}

Yes, Lagrange’s Theorem helps because we know that since C𝐺(𝐴) ≤ 𝐺 then we must have that |C𝐺(𝐴)|
divides |𝐺|. With this information we know that the orders of our centralizers must meet this criteria.

5. In each of parts (a) to (c) show that for the specified group 𝐺 and subgroup 𝐴 of 𝐺, C𝐺(𝐴) = 𝐴 and
N𝐺(𝐴) = 𝐺.

(a) 𝐺 = 𝑆3 and 𝐴 = {1, (1 2 3), (1 3 2)}.

Proof. We know that C𝐺(𝐴) ≤ 𝐺 so by Lagrange’s Theorem we know that |C𝐺(𝐴)| divides |𝐺|. Thus,
|C𝐺(𝐴)| is equal to 2, 3 or 6. Since (1 2) doesn’t commute with (1 2 3) it must be either 2 or 3. Noting
that (1 2 3) and (1 3 2) commute with one another we see that |C𝐺(𝐴)| must be equal to 3, and more
specifically to 𝐴.

We know that C𝐺(𝐴) ≤ N𝐺(𝐴) ≤ 𝐺 (as mentioned in the text) so by Lagrange’s Theorem again we
know that |C𝐺(𝐴)| divides |N𝐺(𝐴)|, which divides |𝐺|.

Therefore, 3 ∣ |N𝐺(𝐴)| ≤ 6. This shows that |N𝐺(𝐴)| is equal to 3 or 6. If the former, thenN𝐺(𝐴) = 𝐴 but
since (1 2) ∘ (1 2 3)=(1 3 2) ∈ 𝐴, then (1 2) ∈ N𝐺(𝐴). Therefore, |N𝐺(𝐴)| = 6 and thusN𝐺(𝐴) = 𝐺.

(b) 𝐺 = 𝐷8 and 𝐴 = {1, 𝑠, 𝑟2, 𝑠𝑟2}.

Proof. From Lagrange’s Theorem we know that the order of C𝐺(𝐴) is either 1, 2, 4, or 8. It can’t be the
later since we know that 𝑠 and 𝑟 don’t commute, i.e. 𝑟𝑠 = 𝑠𝑟−1. Additionally, we know that since 𝐺 is
generated from 𝑟 and 𝑠 and that both commute with 𝑟2 (along with 1), so all elements will commute
with 𝑟2. For 𝐴, we also see that 𝑠 will commute with all the elements so wemust have that |C𝐺(𝐴)| = 4.
Thus, 𝐺𝐺(𝐴) = 𝐴.

We know that C𝐺(𝐴) ≤ N𝐺(𝐴) ≤ 𝐺 (as mentioned in the text) so by Lagrange’s Theorem again we
know that |C𝐺(𝐴)| divides |N𝐺(𝐴)|, which divides |𝐺|.

Therefore, since |C𝐺(𝐴)| = 4 we must have that |N𝐺(𝐴)| is either 4 or 8. However, since 𝑟𝑠𝑟−1 =
𝑠𝑟−1𝑟−1 = 𝑠𝑟−2 = 𝑠𝑟2 which is an element of 𝐴, we see that 𝑟 ∈ N𝐺(𝐴) so we must have that the order
of N𝐺(𝐴) is 8 since C𝐺(𝐴) = 𝐴 ≤ N𝐺(𝐴). Therefore, N𝐺(𝐴) = 𝐺.

(c) 𝐺 = 𝐷 + 10 and 𝐴 = {1, 𝑟, 𝑟2, 𝑟3, 𝑟4}.

Proof. From Lagrange’s Theorem we know that the order of C𝐺(𝐴) is either 1, 2, 5, or 10. Since 𝑠 and 𝑟
don’t commute it can’t be 10 nor can it be 2 as 𝑟 commutes with all of the other powers of 𝑟. Therefore,
it must have order 5 and is therefore C𝐺(𝐴) = 𝐴.

We know that C𝐺(𝐴) ≤ N𝐺(𝐴) ≤ 𝐺 (as mentioned in the text) so by Lagrange’s Theorem again we



know that |C𝐺(𝐴)| divides |N𝐺(𝐴)|, which divides |𝐺|.

Therefore, since |C𝐺(𝐴)| = 5 we must have that |N𝐺(𝐴)| is either 5 or 10. However, since 𝑠𝑟2𝑠−1 =
𝑠𝑟𝑟𝑠−1 = 𝑟−1𝑠𝑟𝑠−1 = 𝑟−1𝑟−1𝑠𝑠−1 = 𝑟−2 = 𝑟2 which is an element of 𝐴, we see that 𝑠 ∈ N𝐺(𝐴) so we must
have that the order of N𝐺(𝐴) is 10 since C𝐺(𝐴) = 𝐴 ≤ N𝐺(𝐴). Therefore, N𝐺(𝐴) = 𝐺.

6. Let 𝐻 be a subgroup of the group 𝐺.

(a) Show that 𝐻 ≤ N𝐺(𝐻). Give an example to show that this is not necessarily true if 𝐻 is not a subgroup.

Proof. Let 𝑥 ∈ 𝐻. Then since 𝑥 ∈ 𝐺 we have that 𝑥𝑥 = 𝑥𝑥 so that 𝑥 ∈ N𝐺(𝐻). Therefore, 𝐻 ≤ N𝐺(𝐻𝐺).

If 𝐻 is not a subgroup it could be a subset of 𝐺 that does not contain the identity element and the
identity element belongs to N𝐺(𝐻).

(b) Show that 𝐻 ≤ C𝐺(𝐻) if and only if 𝐻 is abelian.

Proof. Suppose 𝐻 ≤ C𝐺(𝐻), then for 𝑥 ∈ C𝐺(𝐻) ⟹ 𝑥 ∈ 𝐻 so that 𝑥𝑥 = 𝑥𝑥, for all 𝑥 ∈ 𝐻. Therefore,
𝐻 is abelian.

If 𝐻 is abelian, then for 𝑥 ∈ 𝐻 ⟹ 𝑥 ∈ 𝐺 we have that 𝑥𝑥 = 𝑥𝑥 for all 𝑥 ∈ 𝐻. Therefore, 𝑥 ∈ C𝐺(𝐻) so
that 𝐻 ≤ C𝐻(𝐺).

7. Let 𝑛 ∈ ℤ with 𝑛 ≥ 3. Prove the following:

(a) Z(𝐷2𝑛) = 1 if 𝑛 is odd

Proof. For 𝐷2𝑛 the generators are 𝑟 and 𝑠, which don’t commute. However, we have seen that powers of 𝑟
do commute for with 𝑠 in some of the previous exercises. For example, for 𝐷8 we saw that 𝑟2 commuted
with 𝑠. The reason this power of 𝑟 commuted with 𝑠 is because 𝑛 was a number where 𝑟−2 = 𝑟2. That is
the inverse rotations matched up with forward rotations, which can only happen in the middle of the
𝑛-gon. If 𝑛 = 2𝑘 is an even number then 𝑟𝑘 = 𝑟−𝑘.

If 𝑛 is an odd number then 𝑛 = 2𝑘 + 1 and we see that we will not have an even number of forward
rotations that match up with the same amount of inverse rotations.

Therefore, Z(𝐷2𝑛) = 1 if 𝑛 is odd.

(b) Z(𝐷2𝑛) = {1, 𝑟𝑘} if 𝑛 = 2𝑘.

Proof. Most of the leg work for this proof is done in part (a) above, as we have already seen that if
𝑛 = 2𝑘 is an even number then 𝑟𝑘 = 𝑟−𝑘.

Thus, 𝑠𝑟𝑘𝑠−1 = 𝑠𝑟𝑟𝑘−1𝑠−1 = 𝑟−1𝑠𝑟𝑘−1𝑠−1 = ⋯ = 𝑟−𝑘𝑠𝑠−1 = 𝑟−𝑘 = 𝑟𝑘.

Therefore, Z(𝐷2𝑛) = {1, 𝑟𝑘} if 𝑛 = 2𝑘.

8. Let 𝐺 = 𝑆𝑛, fix an 𝑖 ∈ {1, 2, … , 𝑛} and let 𝐺𝑖 = {𝜎 ∈ 𝐺 ∣ 𝜎(𝑖) = 𝑖} (the stabilizer of 𝑖 in 𝐺). Use group
actions to prove that 𝐺𝑖 is a subgroup of 𝐺. Find |𝐺𝑖|.

Proof. 1 ∈ 𝐺𝑖 by axiom (2) of an action.

If 𝜎 ∈ 𝐺𝑖, then

𝑖 = 1(𝑖) = (𝜎−1𝜎)(𝑖)
= 𝜎−1(𝜎(𝑖)) [by axiom (1) of an action]



= 𝜎−1(𝑖) [since 𝜎 ∈ 𝐺𝑖]
Therefore, 𝜎−1 ∈ 𝐺𝑖. If 𝜎1, 𝜎2 ∈ 𝐺𝑖, then

(𝜎1𝜎2)(𝑖) = 𝜎1(𝜎2(𝑖)) [by axiom (1) of an action]
= 𝜎1(𝑖) [since 𝜎2 ∈ 𝐺𝑖]
= 𝑖 [since 𝜎1 ∈ 𝐺𝑖]

Therefore, 𝐺𝑖 is a subgroup of 𝐺.

The order of |𝐺𝑖| is the number of permutations that fix 𝑖. If we fix one element then we can permute the
other 𝑛 − 1 numbers. Therefore, the order is 𝑛 − 1.

9. For any subgroup 𝐻 of 𝐺 and any nonempty subset 𝐴 of 𝐺 defineN𝐻(𝐴) to be the set {ℎ ∈ 𝐻 ∣ ℎ𝐴ℎ−1 = 𝐴}.
Show that N𝐻(𝐴) = N𝐺(𝐴)∩𝐻 and deduce that N𝐻(𝐴) is a subgroup of 𝐻 (note that 𝐴 need not be a subset
of 𝐻).

Proof. Let ℎ ∈ N𝐻(𝐴). Then
ℎ ∈ 𝐻 and ℎ𝐴ℎ−1 = 𝐴
ℎ ∈ 𝐻 and ℎ ∈ 𝐺 and ℎ𝐴ℎ−1 = 𝐴 [𝐴 ⊆ 𝐺]
ℎ ∈ 𝐻 and ℎ ∈ N𝐺(𝐴) [definition of normalizer of 𝐴 in 𝐺]
ℎ ∈ 𝐻 ∩ 𝑁𝑔(𝐴)

Therefore, N𝐻(𝐴) ⊆ N𝐺(𝐴) ∩ 𝐻.

Conversely, let ℎ ∈ N𝐺(𝐴) ∩ 𝐻.
ℎ ∈ 𝐺 and ℎ𝐴ℎ−1 = 𝐴 and ℎ ∈ 𝐻
(ℎ ∈ 𝐺 and ℎ ∈ 𝐻) and ℎ𝐴ℎ−1 = 𝐴
ℎ ∈ 𝐻 and ℎ𝐴ℎ−1 = 𝐴 [𝐴 ⊆ 𝐺]
ℎ ∈ N𝐻(𝐴)

Thus, N𝐺(𝐴) ∩ 𝐻 ⊆ N𝐻(𝐴).

Therefore, N𝐻(𝐴) = N𝐺(𝐴) ∩ 𝐻.

10. Let 𝐻 be a subgroup of order 2 in 𝐺. Show that N𝐺(𝐻) = C𝐺(𝐻). Deduce that if N𝐺(𝐻) = 𝐺 then
𝐻 ≤ Z(𝐺).

Proof. Since we know that N𝐺(𝐻) and C𝐺(𝐻) are both subgroups of 𝐺 we can show equality by showing
that they are subsets of each other.

Let 𝑔 ∈ C𝐺(𝐻). Then
𝑔ℎ𝑔−1 = ℎ for all ℎ ∈ 𝐻 ⟹ 𝑔𝐻𝑔−1 = 𝐻
𝑔 ∈ N𝐺(𝐻)

Thus, C𝐺(𝐻) ⊆ N𝐺(𝐻).

Conversely, let 𝑔 ∈ N𝐺(𝐻). Then
{𝑔1𝑔−1, 𝑔ℎ𝑔−1} = {1, ℎ}

Since 𝑔1𝑔−1 = 1, this equality of sets occurs if and only if 𝑔ℎ𝑔−1 = ℎ as well, i.e., if and only if 𝑔 ∈ C𝐺(𝐻).

Thus, N𝐺(𝐻) ⊆ C𝐺(𝐻) and therefore, N𝐺(𝐻) = C𝐺(𝐻).



11. Prove that Z(𝐺) ≤ N𝐺(𝐴) for any subset 𝐴 of 𝐺.

Proof. Since we know that Z(𝐺) and N𝐺(𝐴) are both subgroups of 𝐺 we only need to show that Z(𝐺) ⊆
N𝐺(𝐴).

If 𝑔 ∈ Z(𝐺), then

𝑔𝑥 = 𝑥𝑔 for all 𝑥 ∈ 𝐺
𝑔𝑥 = 𝑥𝑔 for all 𝑥 ∈ 𝐴 [𝐴 ⊆ 𝐺]
𝑔𝑥 = 𝑥𝑔 for some 𝑥 ∈ 𝐴
𝑔𝑥𝑔−1 = 𝑥𝑔𝑔−1 for some 𝑥 ∈ 𝐴
𝑔𝑥𝑔−1 = 𝑥 for some 𝑥 ∈ 𝐴
𝑔𝐴𝑔−1 = 𝐴 [definition of 𝑔𝐴𝑔−1]
𝑔 ∈ N𝐺(𝐴)

Therefore, Z(𝐺) ⊆ N𝐺(𝐴).

12. Let 𝑅 be the set of all polynomials with integer coefficients in the independent variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 i.e.,
the members of 𝑅 are finite sums of elements of the form 𝑎𝑥𝑟1

1 𝑥𝑟2
2 𝑥𝑟3

3 𝑥𝑟4
4 , where 𝑎 is any integer and 𝑟1, … , 𝑟4

are non-negative integers. For example,

12𝑥5
1𝑥7

2𝑥4 − 18𝑥3
2𝑥3 + 11𝑥6

1𝑥2𝑥3
3𝑥23

4 (∗)

is a typical element of 𝑅. Each 𝜎 ∈ 𝑆4 gives a permutation of {𝑥1, … , 𝑥4} by defining 𝜎 ⋅ 𝑥𝑖 = 𝑥𝜎(𝑖). This may
be extended to a map from 𝑅 to 𝑅 by defining

𝜎 ⋅ 𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑝(𝑥𝜎(1), 𝑥𝜎(2), 𝑥𝜎(3), 𝑥𝜎(4))

for all 𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑅 (i.e., 𝜎 simply permutes the indices of the variables).

For example, if 𝜎 = (1 2)(3 4) and 𝑝(𝑥1, … , 𝑥4) is the polynomial in (∗) above, then

𝜎 ⋅ 𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 12𝑥5
2𝑥7

1𝑥3 − 18𝑥3
1𝑥4 + 11𝑥6

2𝑥1𝑥3
4𝑥23

3
= 12𝑥7

1𝑥5
2𝑥3 − 18𝑥3

1𝑥4 + 11𝑥1𝑥6
2𝑥3

3𝑥23
3 𝑥3

4

(a) Let 𝑝 = 𝑝(𝑥1, … , 𝑥4) be the polynomial in (∗) above, let 𝜎 = (1 2 3 4) and let 𝜏 = (1 2 3). Compute
𝜎 ⋅ 𝑝, 𝜏 ⋅ (𝜎 ⋅ 𝑝), (𝜏 ∘ 𝜎) ⋅ 𝑝, and (𝜎 ∘ 𝜏) ⋅ 𝑝.

𝜎 ⋅ 𝑝 = (1 2 3 4) ⋅ 𝑝 = 12𝑥5
2𝑥7

3𝑥1 − 18𝑥3
3𝑥4 + 11𝑥6

2𝑥3𝑥3
4𝑥23

1
= 12𝑥1𝑥5

2𝑥7
3 − 18𝑥3

3𝑥4 + 11𝑥23
1 𝑥6

2𝑥3𝑥3
4

𝜏 ⋅ (𝜎 ⋅ 𝑝) = (1 2 3) ⋅ ((1 2 3 4) ⋅ 𝑝) = 12𝑥2𝑥5
3𝑥7

1 − 18𝑥3
1𝑥4 + 11𝑥23

2 𝑥6
3𝑥1𝑥3

4
= 12𝑥7

1𝑥2𝑥5
3 − 18𝑥3

1𝑥4 + 11𝑥1𝑥23
2 𝑥6

3𝑥3
4

(𝜏 ∘ 𝜎) ⋅ 𝑝 = (1 3 4 2) ⋅ 𝑝 = 12𝑥5
3𝑥7

1𝑥2 − 18𝑥3
1𝑥4 + 11𝑥6

3𝑥1𝑥3
4𝑥23

2
= 12𝑥7

1𝑥2𝑥5
3 − 18𝑥3

1𝑥4 + 11𝑥1𝑥23
2 𝑥6

3𝑥3
4

(𝜎 ∘ 𝜏) ⋅ 𝑝 = (1 3 2 4) ⋅ 𝑝 = 12𝑥5
3𝑥7

4𝑥1 − 18𝑥3
4𝑥2 + 11𝑥6

3𝑥4𝑥3
2𝑥23

1
= 12𝑥1𝑥5

3𝑥6
4 − 18𝑥2𝑥3

4 + 11𝑥23
1 𝑥3

2𝑥6
3𝑥4

(b) Prove that these definitions give a (left) group action of 𝑆4 on 𝑅.



Proof. Let 𝑝 ∈ 𝑅. Then 1 ∈ 𝑆4 is the identity permutation that fixes all independent variables of 𝑝 and
we have that

1 ⋅ 𝑝 = 𝑝 for all 𝑝 ∈ 𝑅.
Let 𝜎1, 𝜎2 ∈ 𝑆4 and 𝑝 ∈ 𝑅, then

𝜎1 ⋅ (𝜎2 ⋅ 𝑝) = 𝜎1 ⋅ 𝑝(𝑥𝜎2(1), 𝑥𝜎2(2), 𝑥𝜎2(3), 𝑥𝜎2(4)) [definition of 𝜎 ⋅ 𝑝]
= 𝑝(𝑥𝜎1(𝜎2(1)), 𝑥𝜎1(𝜎2(2)), 𝑥𝜎1(𝜎2(3)), 𝑥𝜎1(𝜎2(4))) [definition of 𝜎 ⋅ 𝑝]
= 𝑝(𝑥(𝜎1∘𝜎2)(1), 𝑥(𝜎1∘𝜎2)(2), 𝑥(𝜎1∘𝜎2)(3), 𝑥(𝜎1∘𝜎2)(4)) [definition of composition]
= (𝜎1 ∘ 𝜎2) ⋅ 𝑝 [definition of 𝜎 ⋅ 𝑝]

Therefore, these definitions give a left group action of 𝑆4 on 𝑅.

(c) Exhibit all permutations in 𝑆4 that stabilize 𝑥4 and prove that they form a subgroup isomorphic to 𝑆3.

Proof. The elements of 𝑆4 that stabilize the 4th element are: {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}

The elements of 𝑆3 have the cycle decompositions: {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} [Exercise 4
Section 1.3]

Since these sets are equivalent, we see that all permutations in 𝑆4 that stabilize 𝑥4 is a group and is
isomorphic to 𝑆3.

(d) Exhibit all permutations in 𝑆4 that stabilize the element 𝑥1 + 𝑥2 and prove that they form an abelian
subgroup of order 4.

Proof. The elements of 𝑆4 that stabilize the element 𝑥1 + 𝑥2 are: {1, (1 2), (3 4), (1 2)(3 4)}

1 is an element of the set and

(1 2) ∘ (3 4) = (1 2)(3 4)
(3 4) ∘ (1 2) = (1 2)(3 4)

(1 2) ∘ (1 2)(3 4) = (1)(2)(3 4) = (3 4)
(1 2)(3 4) ∘ (1 2) = (1)(2)(3 4) = (3 4)
(3 4) ∘ (1 2)(3 4) = (1 2)(3)(4) = (1 2)
(1 2)(3 4) ∘ (3 4) = (1 2)(3)(4) = (1 2)

Therefore, this is an abelian subgroup of order 4.

(e) Exhibit all permutations in 𝑆4 that stabilize the element 𝑥1𝑥2+𝑥3𝑥4 and prove that they form a subgroup
isomorphic to the dihedral group of order 8.

Proof. The elements of 𝑆4 that stabilize the element 𝑥1𝑥2 + 𝑥3𝑥4 are:

{1, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}

This set has order 8, so let’s see if we can find if the elements match to the elements of 𝐷8. We know
that 𝐷8 is generated by 𝑟 and 𝑠 with 𝑠2 = 1, 𝑟4 = 1, 𝑟𝑠 = 𝑠𝑟−1.

Let 𝑟 = (1 3 2 4) and 𝑠 = (1 3)(2 4) so that

𝑟4 = (1 3 2 4) ∘ ((1 3 2 4) ∘ ((1 3 2 4) ∘ (1 3 2 4)))
= (1 3 2 4) ∘ ((1 3 2 4) ∘ (1 2)(3 4))



= (1 3 2 4) ∘ (1 4 2 3)
= (1)(2)(3)(4) = 1

𝑠2 = (1 3)(2 4) ∘ (1 3)(2 4)
= (1)(2)(3)(4) = 1

𝑟𝑠 = (1 3 2 4) ∘ (1 3)(2 4) = (1 2)
𝑠𝑟−1 = (1 3)(2 4) ∘ (4 2 3 1) = (1 2)

This shows us that the relations match. Now, let’s see if we can generate the rest of 𝐷8 with 𝑟 and 𝑠,
which would show that this set is isomorphic to 𝐷8:

𝑟2 = (1 3 2 4) ∘ (1 3 2 4) = (1 2)(3 4)
𝑟3 = (1 3 2 4) ∘ (1 2)(3 4) = (1 4 2 3)
𝑠𝑟 = (1 3)(2 4) ∘ (1 3 2 4) = (3 4)

𝑠𝑟2 = (1 3)(2 4) ∘ (1 2)(3 4) = (1 4)(2 3)
𝑠𝑟3 = (1 3)(2 4) ∘ (1 4 2 3) = (1 2)

Therefore, this set is isomorphic to 𝐷8.

(f) Show that the permutations in 𝑆4 that stabilize the element (𝑥1 + 𝑥2)(𝑥3 + 𝑥4) are exactly the same as
those found in part (e). (The two polynomials appearing in parts (e) and (f) and the subgroup that
stabilizes them will play an important role in the study of roots of quartic equations in Section 14.6.)

Proof. The permutations are {1, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}.

Obviously the identity element stabilizes the element (𝑥1 + 𝑥2)(𝑥3 + 𝑥4).

(𝑥1 + 𝑥2)(𝑥3 + 𝑥4) = 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4

(1 2) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥1𝑥4
(3 4) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥1𝑥4 + 𝑥1𝑥3 + 𝑥2𝑥4 + 𝑥2𝑥3

(1 2)(3 4) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥2𝑥4 + 𝑥2𝑥3 + 𝑥1𝑥4 + 𝑥1𝑥3
(1 3)(2 4) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥3𝑥1 + 𝑥3𝑥2 + 𝑥4𝑥1 + 𝑥4𝑥2
(1 4)(2 3) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥4𝑥2 + 𝑥4𝑥1 + 𝑥3𝑥2 + 𝑥3𝑥1

(1 3 2 4) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥3𝑥2 + 𝑥3𝑥1 + 𝑥4𝑥2 + 𝑥4𝑥1
(1 4 2 3) ∶ 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 ⟹ 𝑥4𝑥1 + 𝑥4𝑥2 + 𝑥3𝑥1 + 𝑥3𝑥2

As we can see, the element (𝑥1 + 𝑥2)(𝑥3 + 𝑥4) = 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 is stabilized after the
permutations.

Therefore, the permutations in 𝑆4 that stabilize the element (𝑥1 + 𝑥2)(𝑥3 + 𝑥4) are exactly the same as
those found in part (e).

13. Let 𝑛 be a positive integer and let 𝑅 be the set of all polynomials with integer coefficients in the inde-
pendent variables 𝑥1, 𝑥2, … , 𝑥𝑛, i.e., the members of 𝑅 are finite sums of elements of the form 𝑎𝑥𝑟1

1 𝑥𝑟2
2 ⋯ 𝑥𝑟𝑛𝑛 ,

where 𝑎 is any integer and 𝑟1, … , 𝑟𝑛 are non-negative integers.

For each 𝜎 ∈ 𝑆𝑛 define a map

𝜎 ∶ 𝑅 → 𝑅 by 𝜎 ⋅ 𝑝(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑝(𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑛)).

Prove that this defines a (left) group action of 𝑆𝑛 on 𝑅.



Proof. This is similar to part (b) of Exercise 12 and it is easy to see that instead of 4 independent variables for
𝑆4, it will be true for 𝑛 independent variables for 𝑆𝑛 as the proof only depends on the function composition
of each independent variable.

𝜎1 ⋅ (𝜎2 ⋅ 𝑝) = 𝜎1 ⋅ 𝑝(𝑥𝜎2(1), 𝑥𝜎2(2), … , 𝑥𝜎2(𝑛)) [definition of 𝜎 ⋅ 𝑝]
= 𝑝(𝑥𝜎1(𝜎2(1)), 𝑥𝜎1(𝜎2(2)), … , 𝑥𝜎1(𝜎2(𝑛))) [definition of 𝜎 ⋅ 𝑝]
= 𝑝(𝑥(𝜎1∘𝜎2)(1), 𝑥(𝜎1∘𝜎2)(2), … , 𝑥(𝜎1∘𝜎2)(𝑛)) [definition of composition]
= (𝜎1 ∘ 𝜎2) ⋅ 𝑝 [definition of 𝜎 ⋅ 𝑝]

Therefore, these definitions give a left group action of 𝑆𝑛 on 𝑅.

14. Let 𝐻(𝐹) be the Heisenberg group over the field 𝐹 introduced in Exercise 11 of Section 1.4. Determine
which matrices lie in the center of 𝐻(𝐹) and prove that Z(𝐻(𝐹)) is isomorphic to the additive group 𝐹.

Proof. From Exercise 11 of Section 1.4 we saw:

Let 𝐻(𝐹) =
⎧{
⎨{⎩

⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

∣ 𝑎, 𝑏, 𝑐 ∈ 𝐹
⎫}
⎬}⎭

— called the Heisenberg group over 𝐹. Let 𝑋 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

and 𝑌 =

⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

be elements of 𝐻(𝐹).

𝑋𝑌 = ⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 𝑑 𝑒
0 1 𝑓
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 𝑑 + 𝑎 𝑒 + 𝑎𝑓 + 𝑏
0 1 𝑐 + 𝑓
0 0 1

⎞⎟⎟⎟
⎠

and that any matrix with 𝑎𝑓 ≠ 𝑑𝑐 will not commute. Thus, they will commute if 𝑎 and 𝑐 are both zero.

Therefore, the center of the Heisenberg group is

Z(𝐻(𝐹)) =
⎧{
⎨{⎩

⎛⎜⎜⎜
⎝

1 0 𝑏
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

∣ 𝑏 ∈ 𝐹
⎫}
⎬}⎭

We now will prove that this is isomorphic to the additive group 𝐹. Let

𝜑(𝑏) = ⎛⎜⎜⎜
⎝

1 0 𝑏
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

It is obviously injective and surjective, so it is a bijection. It is also a homomorphism as

𝜑(𝑎 + 𝑏) = ⎛⎜⎜⎜
⎝

1 0 𝑎 + 𝑏
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 0 𝑎
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 0 𝑏
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

= 𝜑(𝑎)𝜑(𝑏)

Therefore, Z(𝐻(𝐹)) ≅ 𝐹.

2.3 CYCLIC GROUPS AND CYCLIC SUBGROUPS



1. Find all subgroups of 𝑍45 = ⟨𝑥⟩, giving a generator for each. Describe the containments between these
subgroups.

𝑍45 = ⟨1⟩ = ⟨2⟩ = ⟨4⟩ = ⟨7⟩ = ⟨8⟩ = ⟨11⟩ = ⟨13⟩ = ⟨14⟩ = ⟨16⟩ = ⟨17⟩ = ⟨19⟩ = ⟨22⟩ = ⟨23⟩ = ⟨26⟩ = ⟨28⟩ =
⟨29⟩ = ⟨31⟩ = ⟨32⟩ = ⟨34⟩ = ⟨37⟩ = ⟨38⟩ = ⟨41⟩ = ⟨43⟩ = ⟨44⟩ (order 45)

⟨3⟩ = ⟨6⟩ = ⟨12⟩ = ⟨21⟩ = ⟨24⟩ = ⟨33⟩ = ⟨39⟩ = ⟨42⟩ (order 15)

⟨5⟩ = ⟨10⟩ = ⟨20⟩ = ⟨25⟩ = ⟨35⟩ = ⟨40⟩ (order 9)

⟨9⟩ = ⟨18⟩ = ⟨27⟩ = ⟨36⟩ (order 5)

⟨15⟩ = ⟨30⟩ (order 3)

⟨45⟩ (order 1)

The containments between them are given by

⟨𝑎⟩ ≤ ⟨𝑏⟩ if and only if (𝑏, 45) ∣ (𝑎, 45), 1 ≤ 𝑎, 𝑏 ≤ 45.

For example, ⟨3⟩ = ⟨6⟩ because (6, 45) ∣ (3, 45).

2. If 𝑥 is an element of the finite group 𝐺 and |𝑥| = |𝐺|, prove that 𝐺 = ⟨𝑥⟩. Give an explicit example to show
that this result need not be true if 𝐺 is an infinite group.

Proof. If |𝐺| = |𝑥| = 𝑛 < ∞, then 𝑥𝑛 = 1 and 1, 𝑥, 𝑥2, … , 𝑥𝑛−1 are distinct because if 𝑥𝑎 = 𝑥𝑏, with say,
0 ≤ 𝑎 < 𝑏 < 𝑛, then 𝑥𝑏−𝑎 = 𝑥0 = 1, contrary to 𝑛 being the smallest positive power of 𝑥 giving the identity.
Therefore, 𝐺 has at least 𝑛 elements and it remains to show that these are all of them. If 𝑥𝑡 is any power of 𝑥,
use the Division Algorithm to write 𝑡 = 𝑛𝑞 + 𝑘, where 0 ≤ 𝑘 < 𝑛, so

𝑥𝑡 = 𝑥𝑛𝑞+𝑘 = (𝑥𝑛)𝑞𝑥𝑘 = 1𝑞𝑥𝑘 = 𝑥𝑘 ∈ {1, 𝑥, 𝑥2, … , 𝑥𝑛−1}

There are all of the elements of𝐺. Thus, |𝐺| = 𝑛 andwe also see that𝐺 is generated from 𝑥 so that𝐺 = ⟨𝑥⟩.

3. Find all the generators for ℤ/48ℤ.

Any 𝑛 such that gcd(𝑛, 48) = 1 (i.e., the numbers less than 48 that have no factors of 2 or 3).

4. Find all the generators for ℤ/202ℤ.

Any 𝑛 such that gcd(𝑛, 202) = 1 (i.e., the numbers less than 202 that have no factors of 2 or 101).

5. Find the number of generators for ℤ/49000ℤ.

sage: g = 0

sage: for i in range(1,49000):
....: if gcd(i,49000) == 1:
....: g += 1

sage: g

16800

sage: euler_phi(49000)



16800

As we can see from the Python code (using sagemath), the number of generators is 16800.

6. In ℤ/48ℤ write out all elements of ⟨𝑎⟩ for every 𝑎. Find all inclusions between subgroups in ℤ/48ℤ.

First, let us look at the cyclic subgroups that are generators for ℤ/48ℤ.

ℤ/48ℤ = ⟨1⟩ = ⟨5⟩ = ⟨7⟩ = ⟨11⟩ = ⟨13⟩ = ⟨17⟩ = ⟨19⟩ = ⟨23⟩ = ⟨25⟩ = ⟨29⟩ = ⟨31⟩ = ⟨35⟩ = ⟨37⟩ = ⟨41⟩ =
⟨43⟩ = ⟨47⟩

Since these groups are generators they will all generate the integers mod 48, i.e., {0, 1, … , 47}. For example,
⟨1⟩ = {1 ⋅ 𝑛 ∣ 𝑛 ∈ ℤ/48ℤ} = {1 ⋅ 0, 1 ⋅ 1, … , 1 ⋅ 47} = {0, 1, … , 47}.

Now let us take a look at all the other cyclic subgroups.

⟨2⟩ = ⟨10⟩ = ⟨14⟩ = ⟨22⟩ = ⟨26⟩ = ⟨34⟩ = ⟨38⟩ = ⟨46⟩ = {0, 2, 4, 6, … , 46}

⟨3⟩ = ⟨9⟩ = ⟨15⟩ = ⟨21⟩ = ⟨27⟩ = ⟨33⟩ = ⟨39⟩ = ⟨45⟩ = {0, 3, 6, 9, … , 45}

⟨4⟩ = ⟨20⟩ = ⟨28⟩ = ⟨44⟩ = {0, 4, 8, 12, … , 44}

⟨6⟩ = ⟨18⟩ = ⟨30⟩ = ⟨42⟩ = {0, 6, 12, 18, … , 42}

⟨8⟩ = ⟨40⟩ = {0, 8, 16, 24, 32, 40}

⟨12⟩ = ⟨36⟩ = {0, 12, 24, 36}

⟨16⟩ = ⟨32⟩ = {0, 16, 32}

⟨24⟩ = {0, 24}

⟨0⟩ = {0}

7. Let 𝑍48 = ⟨𝑥⟩ and use the isomorphism ℤ/48ℤ ≅ 𝑍48 given by 1 ↦ 𝑥 to list all subgroups of 𝑍48 as
computed in the preceding exercise.

The map given by 1 ↦ 𝑥 means that we have 𝑘 ↦ 𝑥𝑘, where 𝑥𝑘 is the generator for the cyclic subgroup.
Therefore, all subgroups of 𝑍48 as computed in the preceding exercise are:

⟨1⟩, ⟨𝑥⟩, ⟨𝑥2⟩, ⟨𝑥3⟩, ⟨𝑥4⟩, ⟨𝑥6⟩, ⟨𝑥8⟩, ⟨𝑥12⟩, ⟨𝑥16⟩, ⟨𝑥24⟩

Please note that ⟨1⟩ ≠ ⟨1⟩ as the former is the identity element of 𝑍48 while the later is 𝑍48 itself.

8. Let 𝑍48 = ⟨𝑥⟩. For which integers 𝑎 does the map 𝜑𝑎 defined by 𝜑𝑎 ∶ 1 ↦ 𝑥𝑎 extend to an isomorphism from
ℤ/48ℤ onto 𝑍48.

These integers are just the integers for the generators of ℤ/48ℤ which are:

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47

9. Let 𝑍36 = ⟨𝑥⟩. For which integers 𝑎 does the map 𝜓𝑎 defined by 𝜓𝑎 ∶ 1 ↦ 𝑥𝑎 extend to a well-defined
homomorphism from ℤ/48ℤ into 𝑍36. Can 𝜓𝑎 ever be a surjective homomorphism?

Proof. Let us see when this map is well-defined. That is, if 𝑎 = 𝑏, then we must have that 𝜓𝑎(𝑎) = 𝜓𝑎(𝑏).



Suppose 𝑚, 𝑛 ∈ ℤ/48ℤ and 𝑚 = 𝑛 so that 𝑛 = 𝑚+48𝑘, for some 𝑘 ∈ ℤ. That is, the elements of these residue
classes differ by a multiple of 48. For 𝜓𝑎(𝑚) = 𝜓𝑎(𝑛) we need that

𝜓𝑎(𝑚) = 𝜓𝑎(𝑚 ⋅ 1)
= 𝜓𝑎(11 + 12 + ⋯ + 1𝑚)
= 𝜓𝑎(1)1𝜓𝑎(1)2 ⋯ 𝜓𝑎(1)𝑚

= 𝜓𝑎(1)𝑚

= (𝑥𝑎)𝑚

= 𝑥𝑎𝑚

The same argument applies to 𝑛 and we see that 𝑎𝑚 = 𝑎𝑛. However, we need them to be equal in the image
of 𝜓𝑎 for this to be well-defined so

𝑎𝑚 ≡ 𝑎𝑛 (mod 36)
𝑎𝑚 ≡ 𝑎(𝑚 + 48𝑘) (mod 36)
𝑎𝑚 ≡ 𝑎𝑚 + 48𝑎𝑘 (mod 36)

𝑎𝑚 − 𝑎𝑚 ≡ 48𝑎𝑘 (mod 36)
0 ≡ 48𝑎𝑘 (mod 36)

48𝑎𝑘 ≡ 0 (mod 36)

which shows that 48𝑎𝑘 must be a multiple of 36. Since 𝑘 can be any integer, if we let 𝑘 = 1 then we see that
36 divides 48𝑎 which implies that 𝑎 must be divisible by 3. Therefore, the homomorphism is well-defined if
3 ∣ 𝑎.

For 𝜓𝑎 to be surjective the order of 𝑥𝑎 would need to be 36 but the order of 𝑥𝑎 is 36
(36, 𝑎) . Since 𝑎 has a factor of

3 (36, 𝑎) will be at least 3 or greatermeaning 36
(36, 𝑎) will at most be 12. Therefore, 𝜓𝑎 cannot be surjective.

10. What is the order of 30 in ℤ/54ℤ? Write out all the elements and their orders in ⟨30⟩.

The order of 30 in ℤ/54ℤ is 54
(54, 30) = 9.

The elements of ∠30⟩ are:

{0,6,12,18,24,30,36,42,48}

The order of these elements are:

|0| = 1, |6| = 9, |12| = 9, |18| = 3, |24| = 9, |30| = 9, |36| = 3, |42| = 9, |48| = 9

11. Find all cyclic subgroups of 𝐷8. Find a proper subgroup of 𝐷8 which is not cyclic.

The cyclic subgroups of 𝐷8 are:

{1, 𝑟, 𝑟2, 𝑟3}, {1, 𝑟2}, {1, 𝑠}, {1, 𝑠𝑟}, {1, 𝑠𝑟2}, {1, 𝑠𝑟3}

A proper subgroup of 𝐷8 that is not cyclic is {1, 𝑟2, 𝑠, 𝑠𝑟2} as each element either has order 1 or 2 while order
of the group is 4.

12. Prove that the following groups are not cyclic:



(a) 𝑍2 × 𝑍2

Proof. 𝑍2 ×𝑍2 = {(1, 1), (1, 𝑥), (𝑥, 1), (𝑥, 𝑥)} but all of these elements have either order 1 or 2 while order
of the group is 4.

(b) 𝑍2 × ℤ

Proof. 𝑍2 × ℤ = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝑍2, 𝑏 ∈ ℤ}

The generators for 𝑍2 and ℤ are 𝑥 and 1 or -1, respectively. The group operation for 𝑍2 is multiplication
while the group operation for ℤ is addition.

Suppose (𝑥, 1) is the generator for 𝑍2 ×ℤ. Then (1, 1) is a possible element of 𝑍2 ×ℤ which implies that

(𝑥, 1)𝑛 = (1, 1)
(𝑥𝑛, 𝑛 ⋅ 1) = (1, 1)

which implies 𝑥𝑛 = 1 and 𝑛 ⋅ 1 = 1. From 𝑛 ⋅ 1 = 1 we see that 𝑛 = 1 which implies that 𝑥1 = 1 which is
a contradiction because 𝑥 is the generator for 𝑍2 and not the identity element. Therefore, 𝑍2 × ℤ is not
cyclic.

(c) ℤ × ℤ

Proof. ℤ × ℤ = {(𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ ℤ}

The generators for ℤ are 1 or -1. Addition is the group operation for ℤ.

Suppose (1, 1) is the generator for ℤ × ℤ. Then (1, 0) is a possible element of ℤ × ℤ which implies that
(1, 1)𝑛 = (1, 0).

(1, 1)𝑛 = (1, 0) = (𝑛 ⋅ 1, 𝑛 ⋅ 0) ⟹ 1 = 𝑛 ⋅ 1 and 1 = 𝑛 ⋅ 0 which implies that 𝑛 = 1 and that 1 = 1 ⋅ 0 = 0,
which is a contradiction. Therefore ℤ × ℤ is not cyclic.

13. Prove that the following pairs of groups are not isomorphic:

(a) ℤ × 𝑍2 and ℤ

Proof. (0, 𝑥) ∈ ℤ × 𝑍2 and |(0, 𝑥)| = 2, while no element of ℤ contains an element of order 2. Therefore,
ℤ × 𝑍2 and ℤ are not isomorphic.

(b) ℚ × 𝑍2 and ℚ

Proof. (0, 𝑥) ∈ ℚ×𝑍2 and |(0, 𝑥)| = 2, while no element of ℚ contains an element of order 2. Therefore,
ℚ × 𝑍2 and ℚ are not isomorphic.

14. Let 𝜎 =(1 2 3 4 5 6 7 8 9 10 11 12). For each of the following integers 𝑎 compute 𝜎𝑎:

a=13, 65, 626, 1195, -6, -81, -570 and -1211

𝜎 is equivalent to a single permutation from a 12-gon, which is equivalent to 𝑟 ∈ 𝐷24. Therefore,

𝑟13 = 𝑟12+1 = 𝑟
𝑟65 = 𝑟12(5)+5 = 𝑟5 = (1 5 10 3 8 1 6 11 4 9 2 7 12)

𝑟626 = 𝑟12(52)+2 = 𝑟2 = (1 3 5 7 9 11)(2 4 6 8 10 12)
𝑟1195 = 𝑟12(99)+7 = 𝑟7 = (1 8 3 10 5 12 7 2 9 4 11 6)

𝑟−6 = 𝑟6 = (1 7)(2 8)(3 9)(4 10)(5 7 10)(2 5 8 11)(3 6 9 12)



𝑟−570 = 𝑟−12(47)−6 = 𝑟−6 = 𝑟6

𝑟−1211 = 𝑟−12(100)−11 = 𝑟−11 = 𝑟

15. Prove that ℚ × ℚ is not cyclic.

Proof. Suppose that ℚ × ℚ is cyclic and that its generator is (1, 1). Then (1, 0) should be an element in this
group such that

(1, 1)𝑛 = (1, 0)
𝑛(1, 1) = (1, 0)

(𝑛 ⋅ 1, 𝑛 ⋅ 1) = (1, 0)
⟹ 𝑛 ⋅ 1 = 1, 𝑛 ⋅ 1 = 0

which implies 𝑛 = 1 and 𝑛 = 0, which is a contradiction. Therefore, ℚ × ℚ is not cyclic.

16. Assume |𝑥| = 𝑛 and |𝑦| = 𝑚. Suppose that 𝑥 and 𝑦 commute: 𝑥𝑦 = 𝑦𝑥. Prove that |𝑥𝑦| divides the least
common multiple of 𝑚 and 𝑛. Need this be true if 𝑥 and 𝑦 do not commute? Give an example of commuting
elements 𝑥, 𝑦 such that the order of 𝑥𝑦 is not equal to the least common multiple of |𝑥| and |𝑦|.

Proof. Since |𝑥| = 𝑛 and |𝑦| = 𝑚 we see that

(𝑥𝑦)lcm(𝑛,𝑚) = 𝑥lcm(𝑛,𝑚)𝑦lcm(𝑛,𝑚) [𝑥 and 𝑦 commute]
= 1 ⋅ 1 = 1

which implies |𝑥𝑦| = lcm(𝑛, 𝑚) and obviously |𝑥𝑦| divides lcm(𝑛, 𝑚) as they are equal.

If 𝑥 and 𝑦 do not commute this need not be true. For example, as we saw in Exercise 6 of Section 2.1, there
are examples where non-commuting elements of a group with finite order, have a product with infinite
order.

17. Find a presentation for 𝑍𝑛 with one generator.

⟨𝑥 ∣ 𝑥𝑛 = 1⟩

18. Show that if 𝐻 is any group and ℎ is an element of 𝐻 with ℎ𝑛 = 1, then there is a unique homomorphism
from 𝑍𝑛 = ⟨𝑥⟩ to 𝐻 such that 𝑥 ↦ ℎ.

Proof. Let 𝜑 ∶ 𝑍𝑛 → 𝐻 such that 𝜑(𝑥𝑘) = ℎ𝑘. Then

𝜑(𝑥𝑘
1 ⋅ 𝑥𝑘

2) = ℎ𝑘
1 ⋅ ℎ𝑘

2 = 𝜑(𝑥𝑘
1)𝜑(𝑥𝑘

2)

showing 𝜑 is a homomorphism.

To show uniqueness, assume there is another homomorphism 𝑓 with 𝑓 (𝑥) = ℎ. Then

𝑓 (𝑥𝑘) = 𝑓 (𝑥)𝑘 = ℎ𝑘 = 𝜑(𝑥𝑘)

showing that 𝑓 = 𝜑.

19. Show that if 𝐻 is any group and ℎ is an element of 𝐻, then there is a unique homomorphism from ℤ to
𝐻 such that 1 ↦ ℎ.



Proof. Let 𝜑 ∶ ℤ → 𝐻 such that 𝜑(𝑛) = ℎ𝑛. Then

𝜑(𝑛 + 𝑛) = ℎ𝑛 + ℎ𝑛 = 𝜑(𝑛) + 𝜑(𝑛)

showing 𝜑 is a homomorphism.

To show uniqueness, assume there is another homomorphism 𝑓 with 𝑓 (1) = ℎ. Then

𝑓 (𝑛) = 𝑓 (11 + ⋯ + 1𝑛) = 𝑓 (1)𝑛 = ℎ𝑛 = 𝜑(𝑛)

showing that 𝑓 = 𝜑.

20. Let 𝑝 be a prime and let 𝑛 be a positive integer. Show that if 𝑥 is an element of the group 𝐺 such that
𝑥𝑝𝑛 = 1 then |𝑥| = 𝑝𝑚 from some 𝑚 ≤ 𝑛.

Proof. We will show that this is valid for all 𝑛 > 0 with proof by induction.

If 𝑥𝑝 = 1, then |𝑥| = 𝑝 ⟹ 𝑚 = 1 and 1 ≤ 𝑛 is true as 𝑛 > 0.

Assume that 𝑥𝑝𝑛−1 = 1 so that |𝑥| = 𝑝𝑛−1 ⟹ 𝑚 = 𝑛 − 1 and 𝑛 − 1 ≤ 𝑛 is obviously true.

If 𝑥𝑝𝑛 = 1, then |𝑥| = 𝑝𝑛 ⟹ 𝑚 = 𝑛 and thus 𝑛 ≤ 𝑛 is true.

Therefore, if 𝑥 is an element of the group 𝐺 such that 𝑥𝑝𝑛 = 1 then |𝑥| = 𝑝𝑚 from some 𝑚 ≤ 𝑛 for all 𝑛 > 0.

We could have also proved this is by noting that 𝑥𝑝𝑛 = 1 ⟹ |𝑥| = 𝑝𝑛 which shows that the order of 𝑥
divides 𝑝𝑛. Then, since 𝑝 is prime, the only divisors of 𝑝𝑛 are 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑛. Therefore, |𝑥| = 𝑝𝑚 for some
𝑚 ≤ 𝑛.

21. Let 𝑝 be an odd prime and let 𝑛 be a positive integer. Use the Binomial Theorem to show that (1+𝑝)𝑝𝑛−1 ≡
1 (mod 𝑝𝑛) but (1+𝑝)𝑝𝑛−2 ≢ 1 (mod 𝑝𝑛). Deduce that 1+𝑝 is an element of order 𝑝𝑛−1 in the multiplicative
group (ℤ/𝑝𝑛ℤ)×.

Proof. Let 𝑝 be an odd prime number and 𝑧 ≡ 1 (mod 𝑝). Then

ord𝑝(𝑧𝑝 − 1) = ord𝑝(𝑧 − 1) + 1

Here, for a nonzero integer 𝑁, ord𝑝(𝑁) is the largest power of 𝑝 which divides 𝑁 (think of this as the amount
of times that 𝑝divides𝑁). We canwrite 𝑧 = 1+𝑥𝑝 for some integer 𝑥, so ord𝑝(𝑧−1) = ord𝑝(𝑥𝑝) = 1+ord𝑝(𝑥).
Then, using the Binomial Theorem

𝑧𝑝 − 1 = (1 + 𝑥𝑝)𝑝 − 1

= (𝑝
1)(𝑥𝑝) + (𝑝

2)(𝑥𝑝)2 + ⋯ + ( 𝑝
𝑝 − 1)(𝑥𝑝)𝑝−1 + (𝑥𝑝)𝑝

where the first term of the binomial expansion has

ord𝑝 ((𝑝
1)𝑥𝑝) = 2 + ord𝑝(𝑥) = ord𝑝(𝑧 − 1) + 1

and the remaining terms have larger 𝑝-orders so we see that the overall 𝑝-order (i.e., the largest power of
𝑝 that will divide all terms) is ord𝑝(𝑧 − 1) + 1. Since, 𝑧𝑝𝑘 − 1 = (𝑧𝑝𝑘−1)𝑝 − 1, by induction we see that
ord𝑝(𝑧𝑝𝑘 − 1) = ord𝑝(𝑧 − 1) + 𝑘.



Now, if 𝑧 = 1 + 𝑝 then

ord𝑝 (𝑧𝑝𝑘−1 − 1) = ord𝑝(𝑧 − 1) + 𝑘 − 1
= ord𝑝(1 + 𝑝 − 1) + 𝑘 − 1
= ord𝑝(𝑝) + 𝑘 − 1
= 1 + 𝑘 − 1
= 𝑘

for all 𝑘 ∈ ℤ+. Therefore, (1 + 𝑝)𝑝𝑛−1 ≡ 1 (mod 𝑝𝑛) but (1 + 𝑝)𝑝𝑛−2 ≢ 1 (mod 𝑝𝑛).

Since ((1 + 𝑝), 𝑝𝑛) = 1 and (1 + 𝑝)𝑝𝑛−1 ≡ 1 (mod 𝑝𝑛) we see that 1 + 𝑝 is an element of order 𝑝𝑛−1 in the
multiplicative group (ℤ/𝑝𝑛ℤ)×.

22. Let 𝑛 be an integer ≥ 3. Use the Binomial Theorem to show that (1 + 22)2𝑛−2 ≡ 1 (mod 2𝑛) but (1 +
22)2𝑛−3 ≢ 1 (mod 2𝑛). Deduce that 5 is an element of order 2𝑛−2 in the multiplicative group (ℤ/2𝑛ℤ)×.

Proof. Using what was built upon in Exercise 21, if 𝑧 = 1 + 2𝑥, with 𝑥 = 2 so that 𝑧 = 5 then

ord2(𝑧2 − 1) = ord2(𝑧 − 1) + ord2(𝑧 + 1)
= ord2(𝑧 − 1) + ord2(6)
= ord2(𝑧 − 1) + 1

which is similar form as Exercise 21. Again, inductively, we have ord2(𝑧2𝑘 − 1) = ord2(𝑧 − 1) + 𝑘 so that

ord2(52𝑘 − 1) = ord2(5 − 1) + 𝑘
= ord2(4) + 𝑘
= 2 + 𝑘

Therefore, we see that with exponent 2𝑘−2 we would get integer 𝑘 which would be congruent to 0 (mod 2𝑛)
so that (1 + 22)2𝑛−2 ≡ 1 (mod 2𝑛) and (1 + 22)2𝑛−3 ≢ 1 (mod 2𝑛).

Since (5, 2𝑛) = 1 and 52𝑛−2 ≡ 1 (mod 2𝑛) we see that 5 is an element of order 2𝑛−2 in themultiplicative group
(ℤ/2𝑛ℤ)×.

23. Show that (ℤ/2𝑛ℤ)× is not cyclic for any 𝑛 ≥ 3. [Find two distinct subgroups of order 2.]

Proof. From Theorem 7 (3) we know that if the group 𝐻 is cyclic and of finite order 𝑛, then there will be a
unique subgroup of order 𝑎 where 𝑎 is a divisor of 𝑛.

For (ℤ/2𝑛ℤ)× the order is 2𝑛 and obviously 2 is a divisor of this order. However, if there is more than one
subgroup of this order then (ℤ/2𝑛ℤ)× is not cyclic.

(ℤ/2𝑛ℤ)× are the elements of ℤ/2𝑛ℤ that are relatively prime to 2𝑛. Therefore, (ℤ/2𝑛ℤ)× will contain all the
positive odd integers less than 2𝑛. Thus, 2𝑘 − 1 and 2𝑘−1 − 1 will both be elements of (ℤ/2𝑛ℤ)×. However

(2𝑘 − 1)2 = 2𝑘+1 − 2𝑘 + 1 ≡ 1 (mod 2𝑘)
(2𝑘−1 − 1)2 = 22𝑘−2 − 2𝑘 + 1 ≡ 1 (mod 2𝑘)

which shows that both elements generator a different subgroup of order 2. When 𝑛 < 3, we see that this
gives the same group.

Therefore, (ℤ/2𝑛ℤ)× is not cyclic for any 𝑛 ≥ 3.



24. Let 𝐺 be a finite group and let 𝑥 ∈ 𝐺.

(a) Prove that if 𝑔 ∈ N𝐺(⟨𝑥⟩) then 𝑔𝑥𝑔−1 = 𝑥𝑎 for some 𝑎 ∈ ℤ.

Proof. By definition if 𝑔 ∈ N𝐺(⟨𝑥⟩) then 𝑔𝑥𝑔−1 = 𝑥𝑎 for some 𝑎 ∈ ℤ since 𝑥 and 𝑥𝑎 are both in ⟨𝑥⟩.

(b) Prove conversely that if 𝑔𝑥𝑔−1 = 𝑥𝑎 for some 𝑎 ∈ ℤ then 𝑔 ∈ N𝐺(⟨𝑥⟩). [Show first that 𝑔𝑥𝑘𝑔−1 =
(𝑔𝑥𝑔−1)𝑘 = 𝑥𝑎𝑘 for any integer 𝑘, so that 𝑔⟨𝑥⟩𝑔−1 ≤ ⟨𝑥⟩. If 𝑥 has order 𝑛, show the elements 𝑔𝑥𝑖𝑔−1, 𝑖 =
0, 1, … , 𝑛 − 1 are distinct, so that |𝑔⟨𝑥⟩𝑔−1| = |⟨𝑥⟩| = 𝑛 and conclude that 𝑔⟨𝑥⟩𝑔−1 = ⟨𝑥⟩.]

Proof. If 𝑔𝑥𝑔−1 = 𝑥𝑎 for some 𝑎 ∈ ℤ then
𝑔𝑥𝑔−1 = 𝑥𝑎

(𝑔𝑥𝑔−1)𝑘 = (𝑥𝑎)𝑘

(𝑔𝑥𝑔−1)1 ⋯ (𝑔𝑥𝑔−1)𝑘 = 𝑥𝑎𝑘

𝑔𝑥𝑘𝑔−1 = 𝑥𝑎𝑘 [𝑔𝑔−1 = 1]

for any integer 𝑘 so that 𝑔⟨𝑥⟩𝑔−1 ≤ ⟨𝑥⟩. If 𝑥 has order 𝑛, then suppose that 𝑔𝑥𝑖𝑔−1 = 𝑥𝑑 and 𝑔𝑥𝑗𝑔−1 = 𝑥𝑑

for 𝑖, 𝑗 ∈ {0, 1, … , 𝑛 − 1} then
𝑔𝑥𝑖𝑔−1 = 𝑥𝑎𝑖 = 𝑥𝑑 ⟹ 𝑎𝑖 = 𝑑 ⟹ 𝑖 = 𝑑/𝑎
𝑔𝑥𝑗𝑔−1 = 𝑥𝑎𝑗 = 𝑥𝑑 ⟹ 𝑎𝑗 = 𝑑 ⟹ 𝑗 = 𝑑/𝑎

⟹
𝑖 = 𝑗

therefore, 𝑔𝑥𝑖𝑔−1 are unique up to order 𝑛 so that 𝑔⟨𝑥⟩𝑔−1 is a cyclic group with generator 𝑔𝑥𝑔−1. We
also see that |𝑔⟨𝑥⟩𝑔−1| = |⟨𝑥⟩| = 𝑛 and since two finite cyclic groups of the same order are isomorphic,
we have that 𝑔⟨𝑥⟩𝑔−1 = ⟨𝑥⟩.

Therefore, if 𝑔𝑥𝑔−1 = 𝑥𝑎 for some 𝑎 ∈ ℤ then 𝑔 ∈ N𝐺(⟨𝑥⟩).

25. Let 𝐺 be a cyclic group of order 𝑛 and let 𝑘 be an integer relatively prime to 𝑛. Prove that the map 𝑥 ↦ 𝑥𝑘

is surjective. Use Lagrange’s Theorem (Exercise 19, Section 1.7) to prove the same is true for any finite group
of order 𝑛. (For such 𝑘 each element has a 𝑘𝑡ℎ root in 𝐺. It follows from Cauchy’s Theorem in Section 3.2 that
if 𝑘 is not relatively prime to the order of 𝐺 then the map 𝑥 ↦ 𝑥𝑘 is not surjective.)

Proof. Since 𝐺 is cyclic and of order 𝑛 we can use Theorem 7 (3) which tells us that for every integer 𝑚,
⟨𝑥𝑚⟩ = ⟨𝑥(𝑛,𝑚)⟩. Therefore, since (𝑛, 𝑘) = 1 we have that

⟨𝑥𝑘⟩ = ⟨𝑥(𝑛,𝑘)⟩
= ⟨𝑥1⟩
= ⟨𝑥⟩

which shows that the map 𝑥 ↦ 𝑥𝑘 for (𝑛, 𝑘) = 1 is surjective as it generates 𝐺.

For any group 𝐺, Lagrange’s Theorem tells us the that the orders of the subgroups of 𝐺 divide the order
of 𝐺. For any element 𝑥 in 𝐺 one can form the cyclic subgroup of 𝑥 which will have order |𝑥|. As this is a
subgroup of 𝐺 its order must divide the order of 𝐺. Therefore, the order of 𝑥 in 𝐺 divides the order of 𝐺.
This also applies for elements of the subgroups, as they are groups.

Since (𝑛, 𝑘) = 1, 𝑥𝑘 doesn’t belong to any subgroup of 𝐺 (this is because if it did belong to a subgroup of 𝐺
its order would need to be a divisor of the order of that subgroup, which wouldmean it was also a divisor of
𝑛) but its order must divide the order of 𝐺 (by Lagrange’s Theorem) so it must divide the order of 𝐺 itself.
Therefore, the map 𝑥 ↦ 𝑥𝑘 is surjective.



26. Let 𝑍𝑛 be a cyclic group of order 𝑛 and for each integer 𝑎 let

𝜎𝑎 ∶ 𝑍𝑛 → 𝑍𝑛 by 𝜎𝑎(𝑥) = 𝑥𝑎 for all 𝑥 ∈ 𝑍𝑛.

(a) Prove that 𝜎𝑎 is an automorphism of 𝑍𝑛 if and only if 𝑎 and 𝑛 are relatively prime (automorphisms
were introduced in Exercise 20, Section 1.6).

Proof. If 𝜎𝑎 is an automorphism then it is surjective which means it is onto 𝑍𝑛 and from Exercise 25 we
know that the map 𝑥 ↦ 𝑥𝑎 is only surjective when 𝑎 and 𝑛 are relatively prime.

Conversely, if 𝑎 and 𝑛 are relatively prime then from Exercise 25 we know that the map 𝑥 ↦ 𝑥𝑎 is
surjective. Now we just need to show it is injective. If 𝜎𝑎(𝑥1) = 𝜎𝑎(𝑥2) then

𝜎𝑎(𝑥1) = 𝜎𝑎(𝑥2)
𝑥𝑎

1 = 𝑥𝑎
2

(𝑥𝑎
1)1/𝑎 = (𝑥𝑎

2)1/𝑎

𝑥1 = 𝑥2

Thus 𝜎𝑎 is an isomorphism and since it is onto itself, it is an automorphism.

Therefore, 𝜎𝑎 is an automorphism of 𝑍𝑛 if and only if 𝑎 and 𝑛 are relatively prime

(b) Prove that 𝜎𝑎 = 𝜎𝑏 if and only if 𝑎 ≡ 𝑏 (mod 𝑛).

Proof. If 𝜎𝑎 = 𝜎𝑏 and since 𝜎𝑎, 𝜎𝑏 ∈ 𝑍𝑛 we see that

𝑥𝑎 ≡ 𝑥𝑏 (mod 𝑛)
log𝑥(𝑥𝑎) ≡ log𝑥(𝑥𝑏) (mod 𝑛)

𝑎 ≡ 𝑏 (mod 𝑛)

Conversely, if 𝑎 ≡ 𝑏 (mod 𝑛) then

𝑎 ≡ 𝑏 (mod 𝑛)
𝑥𝑎 ≡ 𝑥𝑏 (mod 𝑛)
𝜎𝑎 = 𝜎𝑏

Therefore, 𝜎𝑎 = 𝜎𝑏 if and only if 𝑎 ≡ 𝑏 (mod 𝑛).

(c) Prove that every automorphism of 𝑍𝑛 is equal to 𝜎𝑎 for some integer 𝑎.

Proof. Since an automorphism of 𝑍𝑛 is a map from 𝑍𝑛 → 𝑍𝑛 that is also bijective, we see that 𝜎𝑎 is equal
to any automorphism of 𝑍𝑛 when 𝑎 is relatively prime to 𝑛, as seen in part (a), as it is bijective map
from 𝑍𝑛 → 𝑍𝑛.

(d) Prove that 𝜎𝑎 ∘ 𝜎𝑏 = 𝜎𝑎𝑏. Deduce that the map 𝑎 ↦ 𝜎𝑎 is an isomorphism of (ℤ/𝑛ℤ)× onto the auto-
morphism group of 𝑍𝑛 (so Aut(𝑍𝑛) is an abelian group of order 𝜑(𝑛)).

Proof.

𝜎𝑎 ∘ 𝜎𝑏 = 𝜎𝑎(𝜎𝑏(𝑥))
= 𝜎𝑎(𝑥𝑏)
= (𝑥𝑏)𝑎

= 𝑥𝑎𝑏

𝜎𝑎𝑏 = 𝑥𝑎𝑏



so that
𝜎𝑎 ∘ 𝜎𝑏 = 𝜎𝑎𝑏

(ℤ/𝑛ℤ)× is isomorphic to Aut(𝑍𝑛) because the map 𝑎 ↦ 𝜎𝑎, let’s denote it 𝜑, is a bijection.

injective:

𝜑(𝑎1) = 𝜑(𝑎2)
𝜎𝑎1

= 𝜎𝑎2

𝑎1 ≡ 𝑎2 (mod 𝑛) [part (b)]
𝑎1 = 𝑎2

showing that 𝜑 is injective.

surjective: Let 𝜎𝑎 be an element of the image of 𝜑.

Then, from part (b) we know that 𝜎𝑎 ⟹ 𝑎 ≡ 𝑎 (mod 𝑛), so that 𝑎 ∈ 𝑎. Therefore, 𝜑(𝑎) = 𝜎𝑎 and 𝜑 is
surjective.

Therefore, the map 𝑎 ↦ 𝜎𝑎 is an isomorphism of (ℤ/𝑛ℤ)× onto the automorphism group of 𝑍𝑛.

2.4 SUBGROUPS GENERATED BY SUBSETS OF A GROUP

1. Prove that if 𝐻 is a subgroup of 𝐺 then ⟨𝐻⟩ = 𝐻.

Proof. If 𝐻 is a subgroup of 𝐺 then we know that the intersection of 𝐻 with any other subgroups of 𝐺 that
contain all the elements of 𝐻 must be equal to 𝐻 itself. Therefore, by the definition of the subgroup of 𝐺
generated by 𝐻, ⟨𝐻⟩ = 𝐻.

2. Prove that if 𝐴 is a subset of 𝐵 then ⟨𝐴⟩ ≤ ⟨𝐵⟩. Give an example where 𝐴 ⊆ 𝐵 with 𝐴 ≠ 𝐵 but ⟨𝐴⟩ = ⟨𝐵⟩.

Proof. If 𝑥 ∈ 𝐴 then 𝑥 ∈ ⟨𝐴⟩ by definition. Yet, if 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐵 since 𝐴 ⊆ 𝐵. Then if 𝑥 ∈ 𝐵, we also have
that 𝑥 ∈ ⟨𝐵⟩ by definition. Therefore, ⟨𝐴⟩ ≤ ⟨𝐵⟩.

Let 𝐴 = {1} and 𝐵 = {1, 2} so that 𝐴 ⊂ 𝐵. These finite sets both generate the infinite group of the integers
under addition. Therefore, ⟨𝐴⟩ = ⟨𝐵⟩.

3. Prove that if 𝐻 is an abelian subgroup of a group 𝐺 then ⟨𝐻,Z(𝐺)⟩ is abelian. Give an explicit example of
an abelian subgroup 𝐻 of a group 𝐺 such that ⟨𝐻,C𝐺(𝐻)⟩ is not abelian.

Proof. Since the elements of Z(𝐺) commute with all elements of 𝐺 and 𝐻 is itself an abelian subgroup of 𝐺
the words created by 𝐻 ∪ Z(𝐺) will also commute with one another which shows that ⟨𝐻,Z(𝐺)⟩ is abelian.

Let 𝐺 = 𝐷8 and let 𝐻 = {1, 𝑟2}. We know that 𝐻 is a subgroup because it is non-empty, 𝑟2 is its own
inverse, and 𝑟4 = 1 (order 2). But we can also see that 𝑠 and 𝑟 are both in C𝐺(𝐻) and these do not commute.
Therefore, ⟨𝐻,C𝐺(𝐻)⟩ is not abelian.

4. Prove that if 𝐻 is a subgroup of 𝐺 then 𝐻 is generated by the set 𝐻 − {1}.



Proof. The only difference between the subgroup 𝐻 and the set 𝐻 − {1} is obviously {1}, i.e., the identity
element. When generating a subgroup of 𝐺 with a subset of 𝐺, the finite products of the subset’s elements
and their inverses close the set under the group operation. In this case 𝐻 − {1} will generate all the elements
of the subgroup 𝐻 including the identity element since 𝑥, 𝑥−1 ∈ 𝐻 − {1} ⟹ 𝑥𝑥−1 = 1 ∈ 𝐻 − {1} so that
𝐻 − {1} = ⟨𝐻⟩ and by Exercise 1, ⟨𝐻⟩ = 𝐻.

Therefore, if 𝐻 is a subgroup of 𝐺 then 𝐻 is generated by the set 𝐻 − {1}.

5. Prove that the subgroup generated by any two distinct elements of order 2 in 𝑆3 is all of 𝑆3.

Proof. The elements of 𝑆3 are: {1,(1 2),(1 3),(2 3),(1 2 3),(1 3 2)}.

For (1 2) and (2 3):

(1 2)(1 2) = 1
(1 2)(2 3) = (1 2 3)
(2 3)(1 2) = (1 3 2)

(2 3)(1 2 3) = (1 3)

For (1 2) and (1 3):

(1 2)(1 2) = 1
(1 2)(1 3) = (1 3 2)
(1 3)(1 2) = (1 2 3)

(1 3)(1 3 2) = (2 3)

For (1 3) and (2 3):

(1 3)(1 3) = 1
(1 3)(2 3) = (1 3 2)
(2 3)(1 3) = (1 2 3)

(2 3)(1 3 2) = (1 2)

Therefore, the subgroup generated by any two distinct elements of order 2 in 𝑆3 is all of 𝑆3.

6. Prove that the subgroup of 𝑆4 generated by (1 2) and (1 2)(3 4) is a noncyclic group of order 4.

Proof. For (1 2) and (1 2)(3 4):

(1 2)(1 2) = 1
(1 2)(3 4)((1 2)(3 4)) = 1

(1 2)((1 2)(3 4)) = (3 4)
((1 2)(3 4))(1 2) = (3 4)

(3 4)(3 4) = 1
(3 4)((1 2)(3 4)) = (1 2)

Thus, the subgroup of 𝑆4 is {1,(1 2),(3 4),(1 2)(3 4)}, which has order 4. The reason it is a non-cyclic group
is because no element has order 4.

Therefore, the subgroup of 𝑆4 generated by (1 2) and (1 2)(3 4) is a noncyclic group of order 4.



7. Prove that the subgroup of 𝑆4 generated by (1 2) and (1 3)(2 4) is isomorphic to the dihedral group of
order 8.

Proof. We will show that there are elements in the subgroup of 𝑆4 generated by (1 2) and (1 3)(2 4) that are
equivalent to the generators 𝑟 and 𝑠 of the dihedral group 𝐷8. Let 𝜑 ∶ 𝐷8 → 𝑆4 be themapwhere 𝑟 ↦ 𝑅, 𝑠 ↦ 𝑆
and let 𝐴 = (1 2) and 𝐵 = (1 3)(2 4) so that 𝑆 = (1 2) and 𝑅 = 𝐴𝐵 = (1 3 2 4). The order of 𝑅 is 4 and the
order of 𝑆 is 2. Additionally, 𝑅 and 𝑆 also obey the relationship 𝑟𝑠 = 𝑠𝑟−1 as 𝑅𝑆 = 𝑆𝑅−1 = 𝐵. Thus, 𝜑 is an
isomorphism.

Therefore, the subgroup of 𝑆4 generated by (1 2) and (1 3)(2 4) is isomorphic to the dihedral group of order
8.

8. Prove that 𝑆4 = ⟨(1 2 3 4), (1 2 4 3)⟩.

Proof.

(1 2 3 4)4 = 1
(1 2 3 4)(1 2 3 4) = (1 3)(2 4)
(1 2 4 3)(1 2 4 3) = (1 4)(2 3)
(1 2 3 4)(1 2 4 3) = (1 3 2 4)
(1 2 4 3)(1 2 3 4) = (1 4 2 3)
(1 3 2 4)(1 3 2 4) = (1 2)(3 4)

(1 2 3 4)(1 3)(2 4) = (1 4 3 2)
(1 2 3 4)(1 4)(2 3) = (2 4)
(1 2 3 4)(1 2)(3 4) = (1 3)
(1 2 4 3)(1 3)(2 4) = (2 3)
(1 2 4 3)(1 4)(2 3) = (1 3 4 2)
(1 2 4 3)(1 2)(3 4) = (1 4)
(1 3 2 4)(1 3)(2 4) = (1 2)
(1 3 2 4)(1 4)(2 3) = (3 4)

(1 2)(1 2 3 4) = (2 3 4)
(1 4)(1 2 3 4) = (1 2 3)
(1 2)(1 2 4 3) = (2 4 3)
(1 3)(1 2 4 3) = (1 2 4)
(1 3)(1 3 2 4) = (2 4 3)
(1 4)(1 3 2 4) = (1 3 2)
(1 3)(1 4 2 3) = (1 4 2)
(1 2)(1 4 3 2) = (1 4 3)

Thus we have all 24 elements of 𝑆4 so that 𝑆4 = ⟨(1 2 3 4), (1 2 4 3)⟩.

9. Prove that 𝑆𝐿2(𝔽3) is the subgroup of 𝐺𝐿2(𝔽3) generated by (1 1
0 1) and (1 0

1 1). [Recall from Exercise 9
of Section 1 that 𝑆𝐿2(𝔽3) is the subgroup of matrices of determinant 1. You may assume this subgroup has
order 24 — this will be an exercise in Section 3.2.]



Proof. Let 𝐴 = (1 1
0 1) and 𝐵 = (1 0

1 1). Then,

𝐴3 = (1 0
0 1)

𝐴2 = (1 2
0 1)

𝐵2 = (1 0
2 1)

𝐴 ⋅ 𝐵 = (2 1
1 1)

𝐵 ⋅ 𝐴 = (1 1
1 2)

(𝐴 ⋅ 𝐵)2 = (2 0
0 2)

(𝐴 ⋅ 𝐵)3 = (1 2
2 2)

(𝐵 ⋅ 𝐴)3 = (2 2
2 1)

(𝐴 ⋅ 𝐵) ⋅ 𝐴 = (2 0
1 2)

𝐴 ⋅ (𝐴 ⋅ 𝐵) = (0 2
1 1)

(𝐴 ⋅ 𝐵) ⋅ 𝐵 = (0 1
2 1)

𝐵 ⋅ (𝐴 ⋅ 𝐵) = (2 1
0 2)

𝐵 ⋅ (𝐵 ⋅ 𝐴) = (1 1
2 0)

(𝐵 ⋅ 𝐴) ⋅ 𝐴 = (1 2
1 0)

𝐴 ⋅ 𝐵2 ⋅ 𝐴 = (0 1
2 0)

𝐵 ⋅ 𝐴2 ⋅ 𝐵 = (0 2
1 0)

𝐴 ⋅ (𝐴 ⋅ 𝐵)2 = (2 2
0 2)

𝐵 ⋅ (𝐴 ⋅ 𝐵)2 = (2 0
2 2)

𝐴 ⋅ (𝐴 ⋅ 𝐵)3 = (0 1
2 2)

(𝐴 ⋅ 𝐵)3 ⋅ 𝐵 = (0 2
1 2)

(𝐵 ⋅ 𝐴)3 ⋅ 𝐴 = (2 1
2 0)



𝐵 ⋅ (𝐵 ⋅ 𝐴)3 = (2 2
1 0)

which shows that its order is 24 and that all of the determinants are equal to 1 (mod 3).

Therefore 𝑆𝐿2(𝔽3) is the subgroup of 𝐺𝐿2(𝔽3) generated by (1 1
0 1) and (1 0

1 1).

10. Prove that the subgroup of 𝑆𝐿2(𝔽3) generated by (0 −1
1 0 ) and (1 1

1 −1) is isomorphic to the quaternion
group of order 8. [Use a presentation for 𝑄8.]

Proof. A presentation for 𝑄8 is ⟨𝑒, 𝑖, 𝑗, 𝑘 ∣ 𝑒2 = 𝑒, 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = 𝑒⟩. Noting that −1 ≡ 2 (mod 3) and that

(0 −1
1 0 ) = (0 2

1 0)

(1 1
1 −1) = (1 1

1 2)

which is equivalent to (𝐵 ⋅ 𝐴)(𝐴 ⋅ 𝐵) and (𝐵 ⋅ 𝐴) from Exercise 9, respectively. Therefore, looking at Exercise
9 we can see all of the combinations where these elements are used and that they map to the matrices:

(1 0
0 1) , (1 1

1 −1) , (−1 1
1 1) , (0 −1

1 0 ) (−1 0
0 −1) , (−1 −1

−1 1 ) , ( 1 −1
−1 −1) , ( 0 1

−1 0)

which map to the elements {𝑒, 𝑖, 𝑗, 𝑘, 𝑒, 𝑖, 𝑗, 𝑘} and where the relations of the presentation for 𝑄8 all hold.

Therefore, the subgroup of 𝑆𝐿2(𝔽3) generated by (0 −1
1 0 ) and (1 1

1 −1) is isomorphic to the quaternion
group of order 8.

11. Show that 𝑆𝐿2(𝔽3) and 𝑆4 are two nonisomorphic groups of order 24.

Proof. It is necessary that the order of the elements of these groups match for there to be an isomorphism.
The highest order of 𝑆4 is 4 (cf. Exercise 9, Section 1.6) while the order of (𝐵 ⋅ 𝐴) ⋅ 𝐴 is 6. Therefore, 𝑆𝐿2(𝔽3)
and 𝑆4 are two nonisomorphic groups of order 24.

12. Prove that the subgroup of upper triangular matrices in 𝐺𝐿3(𝔽2) is isomorphic to the dihedral group of
order 8. (cf. Exercise 16, Section 1). [First find the order of this subgroup.]

Proof. The order of this subgroup must be 8 if it is to be isomorphic to 𝐷8. The upper triangular matrices in
𝐺𝐿3(𝔽2) are:

⎛⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 0 0
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 1
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 0
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 0 1
0 1 1
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 1 1
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

, ⎛⎜⎜⎜
⎝

1 0 1
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

where these matrices correspond to the Heisenberg group modulo 2, which is known to be isomorphic to
𝐷8.



Therefore, the subgroup of upper triangular matrices in 𝐺𝐿3(𝔽2) is isomorphic to the dihedral group of
order 8.

13. Prove that themultiplicative group of positive rational numbers is generated by the set {1
𝑝 ∣ 𝑝 is a prime}.

Proof. Let 1
𝑝 be the set of finite products from the set {1

𝑝 ∣ 𝑝 is a prime}. Since the exponents of the members
are ±1, we see that from the Fundamental Theorem of Arithmetic that we can form any positive numerator
or positive denominator and therefore any positive rational number. The multiplicative identity is also part
of the group.

Therefore, themultiplicative group of positive rational numbers is generated by the set {1
𝑝 ∣ 𝑝 is a prime}.

14. A group 𝐻 is called finitely generated if there is a finite set 𝐴 such that 𝐻 = ⟨𝐴⟩.

(a) Prove that every finite group is finitely generated.

Proof. If the set 𝐴 is finite, then there will only be a finite amount of combinations, i.e., words, that will
be members of ⟨𝐴⟩. Therefore, 𝐻 will be finite and thus every finite group is finitely generated.

(b) Prove that ℤ is finitely generated.

Proof. The additive group of ℤ can be generated from the set {-1,1}.

(c) Prove that every finitely generated subgroup of the additive group ℚ is cyclic. [If 𝐻 is a finitely gener-
ated subgroup of ℚ, show that 𝐻 ≤ ⟨1

𝑘 ⟩, where 𝑘 is the product of all the denominators which appear
in a set of generators for 𝐻.]

Proof. Since 𝐻 = ⟨𝐴⟩ and 𝐴 is finite, let 𝑘 be the product of all the denominators for the elements in
𝐴. Then, since the group operation is addition, we see that all elements of ⟨𝐴⟩, and therefore 𝐻, can
be constructed from 1

𝑘 . That is, 1
𝑘 is a generator and thus ⟨1

𝑘 ⟩ is cyclic. Therefore, 𝐻 ≤ ⟨1
𝑘 ⟩ and since

⟨1
𝑘 ⟩ is cyclic, we know that 𝐻 is cyclic as well since every subgroup of a cyclic group is also cyclic [cf.

Theorem 7 (1)].

15. Exhibit a proper subgroup of ℚ which is not cyclic.

The 𝑝-adic rationals are a proper subgroup of ℚ:

{ 𝑎
𝑝2 ∣ 𝑎 ∈ ℤ, 𝑝 a prime number}

but this group is not cyclic because it doesn’t have a single generating element.

16. A subgroup 𝑀 of a group 𝐺 is called a maximal subgroup if 𝑀 ≠ 𝐺 and the only subgroups of 𝐺 which
contain 𝑀 are 𝑀 and 𝐺.

(a) Prove that if 𝐻 is a proper subgroup of the finite group 𝐺 then there is a maximal subgroup of 𝐺
containing 𝐻.



Proof. If 𝐻 is the largest proper subgroup of the finite group 𝐺 then 𝐻 contains 𝐻 and it is the maximal
subgroup.

If 𝐻 is not the largest proper subgroup of the finite group 𝐺 then there is a larger proper subgroup of
𝐺 which is the maximal subgroup that contains 𝐻.

Therefore, if 𝐻 is a proper subgroup of the finite group 𝐺 then there is a maximal subgroup of 𝐺
containing 𝐻.

(b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.

Proof. The subgroup of all rotations in a dihedral group of order 2𝑛 is {1, 𝑟, 𝑟2, … , 𝑟𝑛−1}, which has order
𝑛. Since the largest divisor of an even number is the remainder after division by 2, which in this case
is 𝑛, we see that the subgroup of all rotations in a dihedral group is a maximal subgroup.

(c) Show that if 𝐺 = ⟨𝑥⟩ is a cyclic group of order 𝑛 ≥ 1 then a subgroup 𝐻 is maximal if and only if
𝐻 = ⟨𝑥𝑝⟩ for some prime 𝑝 dividing 𝑛.

Proof. 𝐺 = ⟨𝑥⟩ is a cyclic group of order 𝑛.

Let 𝐻 = ⟨𝑥𝑑⟩, where 𝑑 is composite such that 𝑑 = 𝑎1𝑎2, where 𝑎1, 𝑎2 are both positive integers greater
than 1. Then

𝐻 = ⟨𝑥𝑑⟩ = ⟨𝑥𝑎1𝑎2⟩ < ⟨𝑥𝑎1⟩
since 𝑎1 ∣ 𝑎1𝑎2. Therefore, if 𝑑 is composite then 𝐻 cannot be a maximal subgroup.

On the other hand, let 𝐻 = ⟨𝑥𝑝⟩ for some prime number 𝑝 and assume that 𝐻 < 𝐾 for some subgroup
𝐾 of 𝐺. Since all subgroups of a cyclic group then 𝐾 = ⟨𝑥𝑘⟩. But then 𝑘 must divide 𝑝. Thus

𝑘 = 1 ⟹ 𝐾 = 𝐺𝑘 = 𝑝 ⟹ 𝐾 = 𝐻

In either case we see that 𝐾 does not contain 𝐻 properly, which is a contradiction with our assumption.
Therefore, 𝐻 is maximal.

17. This is an exercise involving Zorn’s Lemma (see Appendix I) to prove that every nontrivial finitely
generated group possesses maximal subgroups. Let 𝐺 be a finitely generated group, say 𝐺 = ⟨𝑔1, 𝑔2, … , 𝑔𝑛⟩,
and let S be the set of all proper subgroups of 𝐺. Then S is partially ordered by inclusion. Let C be a chain
in S.

(a) Prove that the union, 𝐻, of all subgroups in C is a subgroup of 𝐺.

Proof. C is a chain of proper subgroups in S

𝑆1 ≤ 𝑆2 ⋯ < 𝐺 where 𝑆𝑖 ∈ C

The union of all of these proper subgroups 𝐻 is

𝐻 = ⋃
𝑖

𝑆𝑖 where 𝑆𝑖 ∈ C

Since each of these subgroups are already groups The Subgroup Criterion, i.e. that 𝐻 is both nonempty
and for all 𝑥, 𝑦 ∈ 𝐻 ⟹ 𝑥𝑦−1 ∈ 𝐻, holds.

Therefore, 𝐻 is a subgroup of 𝐺.

(b) Prove that 𝐻 is a proper subgroup. [If not, each 𝑔𝑖 must lie in 𝐻 and so must lie in some element of the
chain C. Use the definition of a chain to arrive at a contradiction.]



Proof. Suppose that 𝐻 is not a proper subgroup of 𝐺. Then each 𝑔𝑖 must be in 𝐻 and since a chain
is a totally ordered subset of 𝐺, whether the chain is infinite or not, some proper subgroup in C will
contain each 𝑔𝑖 which is a contradiction as that means some subgroup of S is not a proper subgroup.
Therefore, 𝐻 must be a proper subgroup of 𝐺.

(c) Use Zorn’s Lemma to show that S has a maximal element (which is, by definition, a maximal sub-
group).

Zorn’s Lemma - If 𝐴 is a nonempty partially ordered set in which every chain has an upper bound
then 𝐴 has a maximal element.

Proof. S is a partially ordered set by inclusion. The proof of part (b) was with a general chain C which
showed that 𝐻, and therefore the chain C, had an upper bound as it was a proper subgroup.

Therefore, by Zorn’s Lemma, 𝑆 has a maximal subgroup.

18. Let 𝑝 be a prime and let 𝑍 = {𝑧 ∈ ℂ ∣ 𝑧𝑝𝑛 = 1 for some 𝑛 ∈ ℤ+} (so 𝑍 is the multiplicative group of all
𝑝-power roots of unity in ℂ). For each 𝑘 ∈ ℤ+ let 𝐻𝑘 = {𝑧 ∈ 𝑍 ∣ 𝑧𝑝𝑘 = 1} (the group of 𝑝𝑘th roots of unity).
Prove the following:

(a) 𝐻𝑘 ≤ 𝐻𝑚 if and only if 𝑘 ≤ 𝑚

Proof. If 𝑘 ≤ 𝑚 then
𝑧𝑝𝑘 = 1 ⟹ 𝑧𝑝𝑚 = (𝑧𝑝𝑘 )𝑝𝑚−𝑘 = 1

Thus, 𝐻𝑘 ⊆ 𝐻𝑚 and since 𝐻𝑘 is a group, 𝐻𝑘 ≤ 𝐻𝑚

An 𝑛𝑡ℎ root of unity, is a number 𝑧 satisfying the equation 𝑧𝑛 = 1, which for the complex numbers are

exp 2𝜋𝑖𝑡
𝑛 = cos 2𝜋𝑡

𝑛 + 𝑖 sin 2𝜋𝑡
𝑛 , 𝑡 = 0, 1, … , 𝑛 − 1

showing that there are 𝑛 roots, i.e., that the order is 𝑛.

Without loss of generality, 𝐻𝑘 and 𝐻𝑚 can be written in the above form, showing that they are finite
groups. Then by Lagrange’s Theorem, the order of the subgroup 𝐻𝑘 must divide the order of 𝐻𝑚, since
𝐻𝑘 ≤ 𝐻𝑚. Thus,

|𝐻𝑘 | = 𝑝𝑘 ∣ 𝑝𝑚 = |𝐻𝑚|
⟹ 𝑘 ≤ 𝑚

Therefore, 𝐻𝑘 ≤ 𝐻𝑚 if and only if 𝑘 ≤ 𝑚.

(b) 𝐻𝑘 is cyclic for all 𝑘 (assume that for any 𝑛 ∈ ℤ+, {e2𝜋𝑖𝑡/𝑛 ∣ 𝑡 = 0, 1, … , 𝑛 − 1} is the set of all 𝑛𝑡ℎ roots of
1 in ℂ)

Proof. Let 𝐻𝑘 = {e2𝜋𝑖𝑡/𝑝𝑘 ∣ 𝑡 = 0, 1, … , 𝑝, … , 2𝑝, … , 𝑝𝑘−1}. We see that 𝐻𝑘 can be generated by the single
element e2𝜋𝑖/𝑝𝑘 . Therefore, 𝐻𝑘 is cyclic for all 𝑘.

(c) every proper subgroup of 𝑍 equals 𝐻𝑘 for some 𝑘 ∈ ℤ+ (in particular, every proper subgroup of 𝑍 is
finite and cyclic)

Proof. Let 𝐻 be a proper subgroup of 𝑍. Then 𝐻 = {𝑧1, 𝑧2, … , 𝑧𝑖} for 𝑧𝑖 ∈ 𝑍. 𝐻 is generated by these 𝑧𝑖
such That

𝐻 = ⟨𝑧1, 𝑧2, … , 𝑧𝑖⟩



= ⟨e2𝜋𝑖/𝑝𝑘1 , e2𝜋𝑖𝑝𝑘2 , … , e2𝜋𝑖𝑝𝑘𝑖 ⟩

= ⟨e2𝜋𝑖/ lcm(𝑝𝑘1 ,𝑝𝑘2 ,…,𝑝𝑘𝑖 )⟩

Therefore, 𝐻 is finite and cyclic and equals 𝐻𝑘 for some 𝑘 = lcm(𝑝𝑘1 , 𝑝𝑘2 , … , 𝑝𝑘𝑖).

(d) 𝑍 is not finitely generated.

Proof. Suppose 𝑍 is finitely generated. Then 𝑍 = ⟨𝑧1, 𝑧2, … , 𝑧𝑚⟩ where the 𝑧𝑖 are 𝑝𝑘𝑖 roots of unity. Let

𝑘 = max{𝑘1, … , 𝑘𝑚}

Then each of the 𝑧𝑖 is also a 𝑝𝑘𝑡ℎ root of unity so that

𝑍 ≤ 𝐻𝑘

which is a contradiction as 𝐻𝑘 is finite but 𝑍 is infinite.

Therefore, 𝑍 is not finitely generated.

19. A nontrivial abelian group 𝐴 (written multiplicatively) is called divisible if for each element 𝑎 ∈ 𝐴 and
each nonzero integer 𝑘 there is an element 𝑥 ∈ 𝐴 such that 𝑥𝑘 = 𝑎, i.e., each element has a 𝑘𝑡ℎ root in 𝐴 (in
additive notation, each element is the 𝑘𝑡ℎ multiple of some element of 𝐴).

(a) Prove that the additive group of rational numbers, ℚ, is divisible.

Proof. Let 𝑎 ∈ ℚ and 𝑘 a nonzero integer. We are seeking 𝑥 ∈ ℚ such that

𝑘𝑥 = 𝑎

𝑥 = 𝑎
𝑘 ∈ ℚ [𝑘 is nonzero integer]

Therefore, the additive group of the rational numbers, ℚ, is divisible.

(b) Prove that no finite abelian group is divisible.

Proof. Let 𝐺 be a finite abelian group with order 𝑛.

If 𝑛 = 1 then it is not divisible as it is not a nontrivial abelian group so let us assume that 𝐺 is also a
nontrivial abelian group.

Then, let 𝑎 ∈ 𝐺 be a nonidentity element and let 𝑘 = 𝑛 so that 𝑥𝑛 = 𝑎. Yet, by Lagrange’s Theorem we
know that 𝑥𝑛 = 1 for some 𝑥 ∈ 𝐺. This implies that 𝑎 = 1, which is a contradiction as we proposed that
it was a nonidentity element.

Therefore, no finite abelian group is divisible.

20. Prove that if 𝐴 and 𝐵 are nontrivial abelian groups, then 𝐴 × 𝐵 is divisible if and only if both 𝐴 and 𝐵 are
divisible groups.

Proof. If 𝐴 × 𝐵 is divisible then for (𝑎, 𝑏) ∈ 𝐴 × 𝐵 there exists (𝑥1, 𝑥2) ∈ 𝐴 × 𝐵 such that

(𝑎, 𝑏) = (𝑥1, 𝑥2)𝑘

(𝑎, 𝑏) = (𝑥𝑘
1, 𝑥𝑘

2) [operation is component wise]
⟹ 𝑎 = 𝑥𝑘

1 and 𝑏 = 𝑥𝑘
2



which implies that 𝐴 and 𝐵 are both divisible groups.

If 𝐴 and 𝐵 are both divisible groups then for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 there exists 𝑥1 ∈ 𝐴 and 𝑥2 ∈ 𝐵 such that
𝑎 = 𝑥𝑘

1 and 𝑏 = 𝑥𝑘
2

(𝑎, 𝑏) = (𝑥𝑘
1, 𝑥𝑘

2)
(𝑎, 𝑏) = (𝑥1, 𝑥2)𝑘 [operation is component wise]

which implies that 𝐴 × 𝐵 is divisible.

Therefore, if 𝐴 and 𝐵 are nontrivial abelian groups, then 𝐴 × 𝐵 is divisible if and only if both 𝐴 and 𝐵 are
divisible groups.

2.5 THE LATTICE OF SUBGROUPS OF A GROUP

1. Let 𝐻 and 𝐾 be subgroups of 𝐺. Exhibit all possible sublattices which show only 𝐺, 1, 𝐻, 𝐾 and their joins
and intersections. What distinguishes the different drawings?

The distinguisng factor is whether or not 𝐻 or 𝐾 are subgroups of one another.

2. In each of (a) to (d) list all subgroups of 𝐷16 that satisfy the given condition.

(a) Subgroups that are contained in ⟨𝑠𝑟2, 𝑟4⟩
1, ⟨𝑟4⟩, ⟨𝑠𝑟2⟩, ⟨𝑠𝑟6⟩, ⟨𝑠𝑟2, 𝑟4⟩

(b) Subgroups that are contained in ⟨𝑠𝑟7, 𝑟4⟩
1, ⟨𝑟4⟩, ⟨𝑠𝑟3⟩, ⟨𝑠𝑟7⟩, ⟨𝑠𝑟7, 𝑟4⟩

(c) Subgroups that contain ⟨𝑟4⟩
⟨𝑠𝑟2, 𝑟4⟩, ⟨𝑠, 𝑟4⟩, ⟨𝑟2⟩, ⟨𝑠𝑟3, 𝑟4⟩, ⟨𝑠𝑟5, 𝑟4⟩, ⟨𝑠, 𝑟2⟩, ⟨𝑟⟩, ⟨𝑠𝑟, 𝑟2⟩, ⟨𝑟4⟩

(d) Subgroups that contain ⟨𝑠⟩
⟨𝑠, 𝑟4⟩, ⟨𝑠, 𝑟2⟩, ⟨𝑠⟩

3. Show that the subgroup ⟨𝑠, 𝑟2⟩ of 𝐷8 is isomorphic to 𝑉4.

Proof. It is easy to see that the lattice for ⟨𝑠, 𝑟2⟩ of 𝐷8 and 𝑉4 are equal but this doesn’t prove that they are
isomorphic as nonisomorphic groups can have the same lattice. However, had the lattices been different
then we would have known for sure that they are not isomorphisc.

Looking at the multplication table for 𝑉4 we can see that each element of 𝑉4 is self-inverse. Looking at the
elements of ⟨𝑠, 𝑟2⟩

𝑠2 = 1
(𝑟2𝑠)2 = 1 [𝑟𝑠 = 𝑠𝑟−1]
(𝑟2)2 = 1 [𝑟4 = 1]

we see that they are self-inverse as well.

Therefore, the subgroup ⟨𝑠, 𝑟2⟩ of 𝐷8 is isomorphic to 𝑉4.



4. Use the given lattice to find all pairs of elements that generate 𝐷8 (there are 12 pairs).

(𝑠, 𝑟), (𝑠, 𝑟3), (𝑟2𝑠, 𝑟), (𝑟2𝑠, 𝑟3), (𝑟, 𝑟𝑠), (𝑟, 𝑟3𝑠), (𝑟3, 𝑟𝑠), (𝑟3, 𝑟3𝑠), (𝑠, 𝑟𝑠), (𝑠, 𝑟3𝑠), (𝑟2𝑠, 𝑟𝑠), (𝑟2𝑠, 𝑟3𝑠)

5. Use the given lattice to find all elements 𝑥 ∈ 𝐷16 such that 𝐷16 = ⟨𝑥, 𝑠⟩ (there are 16 such elements 𝑥).

(𝑠, 𝑟), (𝑠, 𝑟3), (𝑠, 𝑟5), (𝑠, 𝑟7), (𝑠, 𝑠𝑟), (𝑠, 𝑠𝑟3)(𝑠, 𝑠𝑟5), (𝑠, 𝑠𝑟7)(𝑠, 𝑟𝑠), (𝑠, 𝑟3𝑠), (𝑠, 𝑟5𝑠), (𝑠, 𝑟7𝑠), (𝑠, 𝑠𝑟𝑠), (𝑠, 𝑠𝑟3𝑠)(𝑠, 𝑠𝑟5𝑠), (𝑠, 𝑠𝑟7𝑠)

6. Use the given lattices to help find the centralizers of every element in the following groups:

(a) 𝐷8

C𝐷8
(1) = 𝐷8

C𝐷8
(𝑟) = ⟨𝑟⟩

C𝐷8
(𝑟2) = 𝐷8

C𝐷8
(𝑟3) = ⟨𝑟⟩

C𝐷8
(𝑠) = ⟨𝑠, 𝑟2⟩

C𝐷8
(𝑟𝑠) = ⟨𝑟𝑠, 𝑟2⟩

C𝐷8
(𝑟2𝑠) = ⟨𝑠, 𝑟2⟩

C𝐷8
(𝑟3𝑠) = ⟨𝑟𝑠, 𝑟2⟩

(b) 𝑄8

C𝑄8
(1) = 𝑄8

C𝑄8
(−1) = 𝑄8

C𝑄8
(𝑖) = ⟨𝑖⟩

C𝑄8
(−𝑖) = ⟨𝑖⟩

C𝑄8
(𝑗) = ⟨𝑗⟩

C𝑄8
(−𝑗) = ⟨𝑗⟩

C𝑄8
(𝑘) = ⟨𝑘⟩

C𝑄8
(−𝑘) = ⟨𝑘⟩

(c) 𝑆3

C𝑆3
(1) = 𝑆3

C𝑆3
((1 2)) = ⟨(1 2)⟩

C𝑆3
((1 3)) = ⟨(1 3)⟩

C𝑆3
((2 3)) = ⟨(2 3)⟩

C𝑆3
((1 2 3)) = ⟨(1 2 3)⟩

C𝑆3
((1 3 2)) = ⟨(1 2 3)⟩



(d) 𝐷16

C𝐷16
(1) = 𝐷16

C𝐷16
(𝑟) = ⟨𝑟⟩

C𝐷16
(𝑟2) = ⟨𝑟⟩

C𝐷16
(𝑟3) = ⟨𝑟⟩

C𝐷16
(𝑟4) = 𝐷16

C𝐷16
(𝑟5) = ⟨𝑟⟩

C𝐷16
(𝑟6) = ⟨𝑟⟩

C𝐷16
(𝑟7) = ⟨𝑟⟩

C𝐷16
(𝑠) = ⟨𝑠, 𝑟4⟩

C𝐷16
(𝑠𝑟) = ⟨𝑠𝑟5, 𝑟4⟩

C𝐷16
(𝑠𝑟2) = ⟨𝑠𝑟2, 𝑟4⟩

C𝐷16
(𝑠𝑟3) = ⟨𝑠𝑟3, 𝑟4⟩

C𝐷16
(𝑠𝑟4) = ⟨𝑠, 𝑟4⟩

C𝐷16
(𝑠𝑟5) = ⟨𝑠𝑟5, 𝑟4⟩

C𝐷16
(𝑠𝑟6) = ⟨𝑠𝑟2, 𝑟4⟩

C𝐷16
(𝑠𝑟7) = ⟨𝑠𝑟3, 𝑟4⟩

7. Find the center of 𝐷16
⟨1, 𝑟4⟩

8. In each of the following groups find the normalizer of each subgroup:

(a) 𝑆3

N𝑆3
(⟨1⟩) = 𝑆3

N𝑆3
(⟨(1 2)⟩) = ⟨1, (1 2)⟩

N𝑆3
(⟨(1 3)⟩) = ⟨1, (1 3)⟩

N𝑆3
(⟨(2 3)⟩) = ⟨1, (2 3)⟩

N𝑆3
(⟨(1 2 3)⟩) = 𝑆3

Note: the trickwith the last subgroup is realizing that in the lattice, the subgroup ⟨(1 2 3)⟩ also generates
its inverse which is (1 3 2).

(b) 𝑄8

N𝑄8
(1) = 𝑄8

N𝑄8
(⟨−1⟩) = 𝑄8

N𝑄8
(⟨𝑖⟩) = 𝑄8

N𝑄8
(⟨𝑗⟩) = 𝑄8

N𝑄8
(⟨𝑘⟩) = 𝑄8

9. Draw the lattices of the subgroups of the following groups:



(a) ℤ/16ℤ

ℤ/16ℤ

⟨2⟩

⟨4⟩

⟨8⟩

⟨16⟩

(b) ℤ/24ℤ

ℤ/24ℤ

⟨2⟩ ⟨3⟩

⟨4⟩ ⟨6⟩

⟨8⟩ ⟨12⟩

⟨24⟩

(c) ℤ/48ℤ [See Exercise 6 of Section 3.]

ℤ/48ℤ

⟨2⟩ ⟨3⟩

⟨4⟩ ⟨6⟩

⟨8⟩ ⟨12⟩

⟨16⟩ ⟨24⟩

⟨48⟩



10. Classify groups of order 4 by proving that if |𝐺| = 4 then 𝐺 ≅ 𝑍4 or 𝐺 ≅ 𝑉4. [See Exercise 36, Section
1.1.]

Proof. Since 𝐺 is finite we know from Lagrange’s Theorem that the order of elements of 𝐺 must divide the
order of 𝐺. The divisors of 4 are 4, 2, and 1. If there is an element of order 4 then we know that 𝐺 is cyclic
and therefore 𝐺 ≅ 𝑍4.

If 𝐺 doesn’t have any elements that have order 4 then we know that the nonidentity elements must have
order 2. From Exercise 36, Section 1.1 we see that for 𝐺 = {1, 𝑎, 𝑏, 𝑐} we have that 𝑎2 = 𝑏2 = (𝑎𝑏)2 = 1, which
is the presentation for 𝑉4 and therefore 𝐺 ≅ 𝑉4.

Therefore, if |𝐺| = 4 then 𝐺 ≅ 𝑍4 or 𝐺 ≅ 𝑉4.

11. Consider the group of order 16 with the following presentation:

𝑄𝐷16 = ⟨𝜎, 𝜏 ∣ 𝜎8 = 𝜏2 = 1, 𝜎𝜏 = 𝜏𝜎3⟩

(called the quasidihedral or semidihedral group of order 16). This group has three subgroups of order 8:
⟨𝜏, 𝜎2⟩ ≅ 𝐷8, ⟨𝜎⟩ ≅ 𝑍8 and ⟨𝜎2, 𝜎𝜏⟩ ≅ 𝑄8 and every proper subgroup is contained in one of these three
subgroups. Fill in the missing subgroups in the lattice of all subgroups of the quasidihedral group on
the following page (please see original text for the diagram), exhibiting each subgroup with at most two
generators. (This is another example of a nonplanar lattice.)

There are two rows that have entries to be filled in and going from left to right:

First row - ⟨𝜎4, 𝜏𝜎2⟩, ⟨𝜎2⟩, ⟨𝜏𝜎⟩, ⟨𝜏𝜎3⟩

Second row - ⟨𝜏𝜎6⟩, ⟨𝜏𝜎4⟩

The next three examples lead to two nonisomorphic groups that have the same lattice of subgroups.

12. The group 𝐴 = 𝑍2 × 𝑍4 = ⟨𝑎, 𝑏 ∣ 𝑎2 = 𝑏4 = 1, 𝑎𝑏 = 𝑏𝑎⟩ has order 8 and has three subgroups of order 4:
⟨𝑎, 𝑏2⟩ ≅ 𝑉4, ⟨𝑏⟩ ≅ 𝑍4 and ⟨𝑎𝑏⟩ ≅ 𝑍4 and every proper subgroup is contained in one of these three. Draw the
lattice of all subgroups of 𝐴, giving each subgroup in terms of at most two generators.

𝐺

⟨𝑎, 𝑏2⟩ ⟨𝑏⟩ ⟨𝑎𝑏⟩

⟨𝑎⟩ ⟨𝑎𝑏2⟩ ⟨𝑏2⟩

⟨1⟩

13. The group 𝐺 = 𝑍2 × 𝑍8 = ⟨𝑥, 𝑦 ∣ 𝑥2 = 𝑦8 = 1, 𝑥𝑦 = 𝑦𝑥⟩ has order 16 and has three subgroups of order
8: ⟨𝑥, 𝑦2⟩ ≅ 𝑍2 × 𝑍4, ⟨𝑦⟩ ≅ 𝑍8 and ⟨𝑥𝑦⟩ ≅ 𝑍8 and every proper subgroup is contained in one of these three.
Draw the lattice of all subgroups of 𝐺, giving each subgroup in terms of at most two generators (cf. Exercise
12).



𝑍2 × 𝑍8

⟨𝑥, 𝑦2⟩ ⟨𝑥𝑦⟩ ⟨𝑦⟩

⟨𝑥, 𝑦4⟩ ⟨𝑥𝑦2⟩ ⟨𝑦2⟩

⟨𝑥𝑦4⟩ ⟨𝑥⟩ ⟨𝑦4⟩

⟨1⟩

14. Let 𝑀 be the group of order 16 with the following presentation:

⟨𝑢, 𝑣 ∣ 𝑢2 = 𝑣8 = 1, 𝑣𝑢 = 𝑢𝑣5⟩

(sometimes called the modular group of order 16). It has three subgroups of order 8: ⟨𝑢, 𝑣2⟩, ⟨𝑣⟩ and ⟨𝑢𝑣⟩
and every proper subgroup is contained in one of these three. Prove that ⟨𝑢, 𝑣2⟩ ≅ 𝑍2 × 𝑍4, ⟨𝑣⟩ ≅ 𝑍8 and
⟨𝑢𝑣⟩ ≅ 𝑍8. Show that the lattice of subgroups of 𝑀 is the same as the lattice of subgroups of 𝑍2 × 𝑍8 (cf.
Exercise 13) but that these two groups are not isomorphic.

Proof. From Exercise 13 were were given that ⟨𝑥, 𝑦2⟩ ≅ 𝑍2 × 𝑍4, ⟨𝑦⟩ ≅ 𝑍8 and ⟨𝑥𝑦⟩ ≅ 𝑍8.

⟨𝑢, 𝑣2⟩ = {1, 𝑢, 𝑣2, 𝑢𝑣2, 𝑣4, 𝑢𝑣4, 𝑣6, 𝑢𝑣6} which is the same as ⟨𝑥, 𝑦2⟩ if we replace 𝑥 with 𝑢 and 𝑦 with 𝑣. There-
fore, ⟨𝑢, 𝑣2⟩ ≅ ⟨𝑥, 𝑦2⟩ ≅ 𝑍2 × 𝑍4.

⟨𝑣⟩ ≅ 𝑍8 since 𝑣 has order 8.

⟨𝑢𝑣⟩ = {1, 𝑢𝑣, 𝑣2, 𝑢𝑣3, 𝑣4, 𝑢𝑣5, 𝑣6, 𝑢𝑣7} ≅ 𝑍8.

The lattice will be the same but the reason these two groups are not isomorphic is that they do not have
matching presentations. That is, 𝑥𝑦 = 𝑦𝑥 but 𝑢𝑣 ≠ 𝑣𝑢 since 𝑣𝑢 = 𝑢𝑣5.

15. Describe the isomorphism type of each of the three subgroups of 𝐷16 of order 8.

The three subgroups of 𝐷16 of order 8 are: ⟨𝑠, 𝑟2⟩, ⟨𝑟⟩, ⟨𝑠𝑟, 𝑟2⟩

⟨𝑠, 𝑟2⟩ ≅ 𝑍2 × 𝑍4 since 𝑠 has order 2 and 𝑟2 has order 4.

⟨𝑟⟩ ≅ 𝑍8 since 𝑟 has order 8.

⟨𝑠𝑟, 𝑟2⟩ ≅ 𝑍2 × 𝑍4 since 𝑠𝑟 has order 2 and 𝑟2 has order 4.

16. Use the lattice of subgroups of the quasidihedral group of order 16 to show that every element of order
2 is contained in the proper subgroup ⟨𝜏, 𝜎2⟩ (cf. Exercise 11).

In the lattice, since ⟨𝜏, 𝜎2⟩ is in the row of groups with order 8 and the row below this are groups of order
4, we see that in the row below this the only groups of order 2 are contained in ⟨𝜏, 𝜎2⟩.

17. Use the lattice of subgroups of the modular group 𝑀 of order 16 to show that the set {𝑥 ∈ 𝑀 ∣ 𝑥2 = 1} is
a subgroup of 𝑀 isomorphic to the Klein 4-group (cf. Exercise 14).



The elements of 𝑀 that have order 2 are: the set {1, 𝑢, 𝑣4, 𝑢𝑣4}

Thus ⟨𝑢, 𝑣4⟩ generates this set and since 𝑢 has order 2 and 𝑣4 also has order two then this subgroup is
isomorphic to 𝑍2 × 𝑍2 which is isomorphic to 𝑉4. We also proved in Exercise 10 that a group of order 4
where all nonidentity elements that have order 2 is isomorphic to 𝑉4. Therefore, ⟨𝑢, 𝑣4⟩ ≅ 𝑉4.

18. Use the lattice to help find the centralizer of every element of 𝑄𝐷16 (cf. Exercise 11).

C𝑄𝐷16
(1) = 𝑄𝐷16

C𝑄𝐷16
(𝜎) = ⟨𝜎⟩

C𝑄𝐷16
(𝜎2) = ⟨𝜎⟩

C𝑄𝐷16
(𝜎3) = ⟨𝜎⟩

C𝑄𝐷16
(𝜎4) = 𝑄𝐷16

C𝑄𝐷16
(𝜎5) = ⟨𝜎⟩

C𝑄𝐷16
(𝜎6) = ⟨𝜎⟩

C𝑄𝐷16
(𝜎7) = ⟨𝜎⟩

C𝑄𝐷16
(𝜏) = ⟨𝜏, 𝜎4⟩

C𝑄𝐷16
(𝜏𝜎) = ⟨𝜏𝜎⟩

C𝑄𝐷16
(𝜏𝜎2) = ⟨𝜏𝜎2, 𝜎4⟩

C𝑄𝐷16
(𝜏𝜎3) = ⟨𝜏𝜎3, 𝜎4⟩

C𝑄𝐷16
(𝜏𝜎4) = ⟨𝜏, 𝜎4⟩

C𝑄𝐷16
(𝜏𝜎5) = ⟨𝜏𝜎5, 𝜎4⟩

C𝑄𝐷16
(𝜏𝜎6) = ⟨𝜏𝜎6, 𝜎4⟩

C𝑄𝐷16
(𝜏𝜎7) = ⟨𝜏𝜎7, 𝜎4⟩

19. Use the lattice to help find N𝐷16
(⟨𝑠, 𝑟4⟩).

N𝐷16
(⟨𝑠, 𝑟4⟩) = ⟨𝑠, 𝑟2⟩

20. Use the lattice of subgroups of 𝑄𝐷16 (cf. Exercise 11) to help find the normalizers:

(a) N𝑄𝐷16
(⟨𝜏𝜎⟩)

⟨𝜏𝜎, 𝜎2⟩

(b) N𝑄𝐷16
(⟨𝜏, 𝜎4⟩)

𝑄𝐷16


