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Chapter 3 - Quotient Groups and Homomorphisms
Exercises:
3.1 DEFINITION AND EXAMPLES

Let G and H be groups.

1. Let ¢ : G —» Hbeahomomorphism and let E be a subgroup of H. Prove that 9! (E) < G (i.e., the preimage
or pullback of a subgroup under a homomorphism is a subgroup). If E < H prove that ¢! (E) < G. Deduce
that kerg < G.

Proof. Since E is a subgroup of H we know it contains the identity 1;; and since we know that homomor-
phisms map identities to identities, i.e., (1) = 1y we see that

e (1) = ¢ He(1e))
=1g

If x,y € ¢ 1(E), say ¢(x) = a,9(y) = b, wherea,b € E. Then ¢(y~!) = ¢(y)~! = b~! [Proposition 1 (2)]
and b~! € E since E is a group and contains inverses.

ab™! = p(x)py) !

ab™! = p(x)py1) [Proposition 1 (2)]
ab=! = p(xy~1) [¢ is a homomorphism]
¢ @bty = xy! [applying ¢! to both sides]

Thus, xy~! € ¢~1(E) and therefore by the subgroup criterion ¢! (E) < G.

If E < H then for all h € H we have that hEh~! = E. Let ¢1,9, € G such thatg; = ¢! (h) and g, = ¢~ 1 (h™1)
so that

hEh! = E [E < H]
@ Y (hER™Y) = 9~ 1(E) [applying ¢! to both sides]
et Y (E)p~t(h™!) = ¢~ 1(E) [¢ is a homomorphism]
2197 Y E)g5t = 9 1(E) [Proposition 1 (2) for g, ]

Additionally, since this is true for all of i € H it is also true for all ¢ € G as g, and g, where the fibers for h
and h7! (ie., (g1) = h, ¢(gp) = h™1). Therefore, 9~1(E) < G

Furthermore, since 1;; € E and the kerg = {g € G | ¢(g) = 1} we see that the above proof can be extended
to the kernel of ¢ such that

o' (1p)
P Q) [definition of kernel]

§197 (1)g5 !
819" (9(®)83"
1887 =8
which is true as G is a group. Thus, we deduce that kergp < G. O



2. Let ¢ : G — H be a homomorphism of groups with kernel K and leta,b € ¢(G). Let X € G/K be the fiber
above a and let Y be the fiber above b, i.e., X = go‘l(a), Y = go‘1 (b). Fix an element u of X (so ¢(u) = a).
Prove that if XY = Z in the quotient group G/K and w is any member of Z, then there is some v € Y such
that uo = w. [Show u~lw € Y.]

Proof. Suppose u € X and w € Z. Let v = u~'w. Then

Pv) = pu'w)
= p(u™")g(w)
= pu) ' p(w)
=alab [Z is defined to be the fiber above the product ab]
=b
Thus,v €Y.
Therefore, if XY = Z in the quotient group G/K and w is any member of Z, then there is some v € Y such

that uv = w. 0

3. Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian. Give an example of a
non-abelian group G containing a proper normal subgroup N such that G/N is abelian.

Proof. To show that A/B is abelian we must show that its elements commute. The elements of A/B are the left
or right cosets. Let X,Y € A/B where foranyu € X andv € Y wehave X = {ub |b € B},Y = {vb | b € B}.
Thus, since A is abelian and its elements commute we see that

XY = (ub)(vb) = (vb)(ub) = YX
Therefore, A/B is abelian. O
An example of a non-abelian group G containing a proper normal subgroup N such that G/N is abelian is

G = Dg and N = (r?) which was shown in the examples to be isomorphic to the Klein 4 group which is
abelian.

4. Prove that in the quotient group G/N, (gN)* = g*N for alla € Z.

Proof. Since G/N is a quotient group N is the kernel of some homomorphism and by Theorem 3, this quotient
group has elements of left cosets gN with the operation defined by

81N o &N = (8182)N
Therefore, for any &« € Z we have that
GN)* = (gN)1 -+ (§N) = ("IN
Therefore, in the quotient group G/N we have that (gN)* = ¢g*N foralla € Z. O
5. Use the preceding exercise to prove that the order of the element ¢N in G/N is n, where # is the smallest

positive integer such that g” € N (and gN has infinite order if no such positive integer exists). Give an
example to show that the order of gN in G/N may be strictly smaller than the order of g in G.



Proof. Let g € G and g™ = 1 with m being the smallest integer with this property. Let’s also suppose that
the order of gN is n. Then, since N is the identity element in G/N we see that

gN)" =g"N =N
Thus, since the order of gN was given to be 1 we also see that
gN|=n = (@gN)"=N = ¢"N=N

and ¢g" # 1 as m was the smallest integer with this property so therefore g” must be an element of N.
Additionally 7 is the smallest positive integer such that " € N [we know it is the smallest positive integer
from the definition of order]. O

For an example showing the order of gN in G/N being strictly smaller than the order of g in G, let us take
G = Z,, the cyclic group of order 4. Let ¢ € G such that g¢* = 1 and N = {1,¢?} is a normal subgroup (this
can easily be shown by conjugation). Then, ¢N = {g,¢%} and we see that (¢N)? = ¢?N = {¢2,1} = N so
therefore the order of gN is 2 while the order of g is 4.

6. Define ¢ : R* — {41} by letting ¢ (x) be x divided by the absolute value of x. Describe the fibers of ¢ and
prove that ¢ is a homomorphism.

Proof. The fibers of ¢ are the positive and negative elements of R*. Thatis ¢~!(+1) = {+x | x € R*}

Let x,y € R*. Then

Y
p(xy) = ol W Px)ey)

Therefore, ¢ is a homomorphism. O

7. Define 7 : R? - R by 7((x,y)) = x + y. Prove that 7t is a surjective homomorphism and describe the
kernel and fibers of 7 geometrically.

Proof. First, let’s show that 77 is a homomorphism. Let x1,x,,1,y» € R? so that

7T((X1, Y1) + (X2, ¥2)) = (X + Xo, Y1 + Y2)) [vector addition in R?2]
(x1 +x2) + (Y1 +VY2)

(x1 +y1) + (X2 +y2)

(X1, Y1) + (X2, Y2))

Therefore, 7t is a homomorphism. It is easy to see that this is a surjective homomorphism since any element
of R can be produced from the components of the vector in R?,ie,z=x+y € R = (x,y) € R2 O

Let the coordinate axis of R? be x and y. Then the kernel of 7 is the line y = —x and the fibers of 7t are the
summations of the vector projections on the axis x and y.

8. Let ¢ : R* — R* be the map sending x to the absolute value of x. Prove that ¢ is a homomorphism and
find the image of ¢. Describe the kernel and the fibers of ¢.

Proof. Letx,y € R* so that

Pxy) = lxyl = Ixllyl = (x) ¢ (y)
Therefore, ¢ is a homomorphism. The image of ¢ is R*. The kernel of ¢ is {+1} and the fibers of ¢ are
¢ l(a) = {+ala € R*}. O



9. Define ¢ : C* —» R* by ¢(a + bi) = a® + b*. Prove that ¢ is a homomorphism and find the image of ¢.
Describe the kernel and the fibers of ¢ geometrically (as subsets of the plane).

Proof. Leta + bi,c 4+ di € C* so that

@((a + bi)(c + di)) = ¢((ac — bd) + (ad + bc)i)

= (ac — bd)? + (ad + bd)?

= (ac)? — 2acbd + (bd)? + (ad)? + 2adbc + (bc)?

= (ac)? + (bd)? + (ad)? + (bc)?

= (@ +b*)(? +d?)

= @(a+ bi)p(c + di)
Therefore, ¢ is a homomorphism. The image of ¢ is the square of the modulus of the complex vector, a + bi.
The kernel of ¢ is the unit circle in C* since these complex numbers all have norm equal to 1. The fibers

of ¢ are complex numbers that have the same norms. Thus, the fibers of ¢ are circles in the complex plane
centered at the origin. O

10. Let ¢ : Z/8Z — Z/4Z by ¢(a) = a. Show that this is well-defined, surjective homomorphism and
describes its fibers and kernel explicitly (showing that ¢ is well-defined involves the fact that 2 has a different
meaning in the domain and range of ¢).

Proof. ¢ is obviously a homomorphism as
p@+b)=¢@a+b)=a+b=a+b=¢@ + b

Additionally, it is trivially surjective as ¢(a) = a. To see that it is well-defined we can manually check that
for all elements of the domain it maps to an element in the codomain.

9(0) =0
o) =1
p2) =2
p3) =3
p4) =0
pB)=1
p6) =2
¢(7) =3
The kernel of ¢ is {6, Z} and the fibers of ¢ are the sets {E,m |a e Z/AZ). O

a b

11. Let Fbe a field and let G = {(0 c

) |a,b,c € F,ac # 0} < GL,(F).

(a) Prove that the map ¢ : (g IZ) — a is a surjective homomorphism from G onto F* (recall that F* is the

multiplicative group of nonzero elements in F). Describe the fibers and kernel of ¢.



a; by a by
Proof. Let (0 Cl>l<0 Cz) € G so that

a; by (ay, by\, _ a,a, a;by + bycy _ _ a; by a, b,
(5 o) (5 ap=el(( ")) mme=e((5 0))e((5 2))

Thus, ¢ is a homomorphism and is surjective as a can be all of F*. The kernel of ¢ is the group of

0 IZ) The fibers of ¢ for a givena are ¢~ (a) = {(ﬂ b

with matching entries in the position of a.

0 c) |a e F* }, the collection of matrices

elements (1

(b) Prove that the map v : (g c

the fibers and kernel of .

b) — (a,c) is a surjective homomorphism from G onto F* x F*. Describe

Proof. Let (al b1> , <a2 b2) € G so that

0 ¢ 0 o
ay by (ay Dby _ a1a, aiby, +bic,
{10 €1 0 ¢ ¢ 0 €16
= (a1a,,¢1C3)
= (ay,¢1)(a,¢3)

— a; by a by
=o((5 ape(s 2)

Thus, ¢ is a homomorphism and is surjective as a4 and ¢ can all of F* so that (g,c) is all of F* x F*.

The kernel of ¢ is the group of elements <(1) l{) The fibers of ¢ for a given a and c are (p‘l ((a,c)) =

{(8 ?) |a,c e F* }, the collection of matrices with matching entries in the positions of a and c. O

(c) LetH = {(é llj) IbeF } Prove that H is isomorphic to the additive group F.

1 b
01

H to F and therefore H is isomorphic to F (the proof of ¢ being a surjective homomorphism is similar
to part (a) and we can see it is injective as ¢ (b;) = ¢(b,) = b; =by). O

Proof. Let ¢ : H — F such that ¢ << )) = b, for b € F. Then ¢ is a bijective homomorphism from

12. Let G be the additive group of real numbers, let H be the multiplicative group of complex numbers
of absolute value 1 (the unit circle S in the complex plane) and let ¢ : G — H be the homomorphism
@ : r — ¥ Draw the points on a real line which lie in the kernel of ¢. Describe similarly the elements
in the fibers of ¢ above the points —1,7, and /3 of H. (Figure 1 of the text for this homomorphism ¢ is
usually depicted using the following diagram [please see text for the diagram].)

The points on a real line which lie in the kernel of ¢ are Z as the integers make e2"" equal to 1. The elements

1+4n 1+4n 2n
e_

47i/3 4 3 for n € Z, respectively.

in the fibers of ¢ above the points —1, i, and e

13. Repeat the preceding exercise with the map ¢ replaced by the map ¢ : r > e,

1+4n 1+4n n

47i/3 ”
4 7 8 7 3/

The kernel of ¢ is again Z. The elements in the fibers of ¢ above the points —1,i, and e are

for n € Z, respectively.



14. Consider the additive quotient group Q/Z.

(a)

(b)

(c)

(d)

Show that every coset of Z in Q contains exactly one representative 4 € Q in the range 0 < g < 1.

Proof. Every coset of Z in the additive quotient group Q/Z is of the form q + Z for 4 € Q. Since
representatives of a coset are equal let t € Z so that the representative of the coset of Z in Q is g + £.

m
Then, if q is an integer let t = —g so that g + ¢ = 0. If g is not an integer then g4 = — for relatively prime
integers m, n (i.e., they don’t have any common divisors). Let m be the integer that is either negative or
m m [m
positive (zero was covered in the previous case). Thenif m < Olett = [Z] so that0 < -t [E] <1
m m m
andif m > 0and m > nthenlett = — {;J sothat 0 < P ng < 1. Lastly, if m > 0 and m < n then

1ett:0sothat0§%+0<1.

Therefore, every coset of Z in Q contains exactly one representative g € Q in therange 0 <g < 1. O
Show that every element of Q/Z has finite order but that there are elements of arbitrarily large order.

Proof. From the proof of part (a) we know that there exists a representative, say g, of each coset that is
in the range 0 < g < 1. Thus, for g = m/n we see that n(q) = n(m/n) = m € Z. Therefore, the order of
g + Z is finite. Additionally, we can also see from this that there are elements of arbitrarily large order
since this is dependent on 7. O

Show that Q/Z is the torsion subgroup of R/Z (cf. Exercise 6, Section 2.1).

Proof. From the proof of part (b) we know that all elements of Q/Z have finite order. To show that
Q/Z is the torsion subgroup of R /Z we must show that these are the only elements of finite order.

Assume that, the elements of R/Z are also of finite order. Thus, for r € R and t € Z we have that
a representative of a coset in R/Z is r + t. For this to be of finite order we must have that n(r + t) €
Z. However, if we choose r to be an irrational number then n(r + t) & 7Z, which is a contradiction.
Therefore, the order must be infinite. Thus, Q/Z is the torsion subgroup of R/Z. O

Prove that Q/Z is isomorphic to the multiplicative group of root of unity in C*.

Proof. We will show that themap ¢ : Q/Z - UwhereU ={z€ C|z" =1,n€ Z*}and ¢p(g+ Z) =
€27 is an isomorphism.

homomorphism -

g1+ 2Z) + (92 + 2)) = (g1 + 42 + Z)
— e2ni(q1+q2)
— e27riq1+27'[iq2

— e2m’q1 e27riq2

o1+ Z)p(q2 + Z)

which shows this is a homomorphism as addition is the group operation for Q/Z while multiplication
is the group operation for the multiplicative group of root of unity in C*.

injective -

P(q1 +Z) = ¢4, + Z)

e27iq1 — e27‘[iq2



log(e?™) = log(e®™"2)
Zﬂlql = 27‘[1(]2
Ji =192

which implies q; + Z = g, + Z and therefore ¢ is injective.

surjective - From ¢ it is easy to see that for some %" that we have some coset g + Z and therefore ¢ is
surjective.

Therefore, Q/Z is isomorphic to the multiplicative group of root of unity in C*. O
15. Prove that the quotient of a divisible abelian group by any proper subgroup is also divisible. Deduce
that Q/Z is divisible (cf. Exercise 19, Section 2.4).

Proof. Let (G, +) be a divisible abelian group and N a proper subgroup of G. If G is divisible then ng = a for
g4 € Gand n € Z™*. Since G is abelian any subgroup is normal and therefore G/N is the quotient group
with elements ¢ = ¢ + N. Thus, ng = n(g + N) =ng+ N =a+ N [nN = N for any group]. Therefore, G/N
is divisible showing that every quotient of a divisible group is divisible.

Exercise 19, Section 2.4 showed that the abelian additive group Q is divisible and therefore the quotient
Q/Z must be divisible. O

16. Let G be a group, let N be a normal subgroup of G and let G = G/N. Prove that if G = (x,y) then
G=(x, y). Prove more generally that if G = (S) for any subset S of G, then G = (S).
Proof. If G = (x,y) then

G/N = (x,y)/N
= {x”‘yﬁN la, B € Z}

= {x”‘NyﬁN la, B € Z} [well-defined since N is normal]
= {aN)*YN)P |a, B € Z)

= (xN,yN)/N

=(x,y)/N

so that G = X, ).

More generally, if G = (S) for any subset S then

G/N = (S5)/N
= {sy's52 s, N |s; € S,¢; = +1}
= {s{'"Ns;?N ---s;”N | s; € S, €; = +1} [well-defined since N is normal]
= {(81N)1(8,N)2 -+ (5, N)“ | 5; € S, €; = £1}
= (s;N)/N
=(S)/N

so that G = (S). O



17. Let G be the dihedral group of order 16 (whose lattice appears in Section 2.5):
=(r,s|r¥*=s2=1,rs =sr 1)

and let G = G/(r*) be the quotient of G by the subgroup generated by r* (this subgroup is the center of G,
hence is normal).

(a) Show that the order of G is 8.

Proof. Since the order of G is 16 and (r*) = {1,7*} is of order 2 this means (r*) will partition G into 8
disjoint sets so that the order of G is 8. O

(b) Exhibit each element of G in the form ?uﬁb, for some integers a and b.

Since (r*) = {1,74} then G = {1,7,12,13,5,57, 512,513}

(c) Find the order of each of the elements of G exhibited in (b).

1= 1,17 = 4,12 = 2,13 = 4,5 = 2,57 = 4,Isr2| = 2,|sr3| = 4

d) Write each of the following elements of G in the form §a7b, for some integers a and b as in (b):
g g

rs, sr—2s, s~lr—lsr.

75 = sr1

sr=2s = rsr~1s = rrss = r2

s~lr—lgr = 7557 = 12 [since s = s71]

() Prove that H = (5,72) is a normal subgroup of G and H is isomorphic to the Klein 4-group. Describe
the isomorphism type of the complete preimage of H in G.

Proof. From Lagrange’s Theorem we know that since G is finite that H must divide its order, which it
obviously does since (s, r2) = {1 s, 1’2 1’2} which is of order 4 and 4 | 8. Furthermore, we know that

H<Ng(H) <G

and for H to be a normal subgroup of G we must have that N= (H ) = G. To verify that Nz (ﬁ) G we

can find an element not in H that normalizes H which would show that NG(H ) must have order 8 by
Lagrange’s Theorem.

rir-l=1eH
rsrl=sr2=s2cH
mrl=r2ecH

rsr2r-l =sr2=sr2 € H

Since 7 normalizes H and 7 & H, we see that 7 € Ng(ﬁ) so therefore the order must be 8 showing us
that H < G.



From the classification of groups of order 4 we know that this group is either isomorphic to V, or Z,.
To show that H is isomorphic to V, we can show that each element has at most order 2 (i.e., no element

of order 4).
=1
Is| =2
|7_2| =2 [since [r| = 4]
lsr2| = 2

Therefore, H = V,. The complete preimage of H in G is {1,7,72,13,s,sr,sr2,sr>} which is isomorphic to
Ds. 0

(f) Find the center of G and describe the isomorphism type of G/ Z G)

Proof. The center of Gis (r_2> =1, 7_2}. The elements of G/ ZG) are {1, ?, g, 5} and by the classification
of groups or order 4 we know that this group is isomorphic to V, since all non-identity elements have
order 2. O
18. Let G be the quasidihedral group of order 16 (whose lattice was computed in Exercise 11 of Section 2.5):

G={(o,t|cd=12=1,07 = 10%)

and let G = G/(c*) be the quotient of G by the subgroup generated by ¢* (this subgroup is the center of G,
hence is normal).

(a) Show that the order of G is 8.

Proof. Since the order of G is 16 and (0*) = {1, 0%} is of order 2 this means (¢*) will partition G into 8
disjoint sets so that the order of G is 8. O

(b) Exhibit each element of G in the form ?aﬁb, for some integers a and b.

Since (c4) = {1,0*} then G = {1, 7, 02,03, T, T, T02, T0°3)

(c) Find the order of each of the elements of G exhibited in (b).

1= 1,101 = 4,102 = 2,103 = 4,[T| = 2,[T0| = 4,|t02| = 2,|T0%| = 4

(d) Write each of the following elements of G in the form ?aﬁb, for some integers a and b as in (b):

ot, o %t, v iclto

0T =103

To 27T = 1027 = 107103 = 7702 = 02

Tl = (c0) 110 = (t03) "t =031 110 = 072 = ¢2

(e) Prove that G = Dj.



Proof. Letg : G- Dg such that ¢(t%c?) = s%?. This map is obviously bijective since G={1,7, ﬁ, ;, T,7T0,T02, T03)}
and ¢(G) = {1,r,7%,13,s,sr,51%, 513}.

This is also a homomorphism since in G the relation 77 = 703 = 70! and therefore the multiplicative
operation will be preserved between rs = sr~L. O

19. Let G be the modular group of order 16 (whose lattice was computed in Exercise 14 of Section 2.5):
G=v|u*=0v8=1,0u=uvd

and let G = G/(v*) be the quotient of G by the subgroup generated by v* (this subgroup is contained in the
center of G, hence is normal).

(a) Show that the order of G is 8.

Proof. Since the order of G is 16 and (v*)y = {1,v*} is of order 2 this means (v*) will partition G into 8
disjoint sets so that the order of G is 8. O

(b) Exhibit each element of G in the form Haz_Jb, for some integers a and b.

Since (v4) = {1,v%} then G = {1,7, v, 3,4, i, uv?, uv3}

(¢) Find the order of each of the elements of G exhibited in (b).

N =1, = 4,102 = 2,103 = 4, [l = 2, [50] = 4, [uv?| = 2, [uv?| = 4

(d) Write each of the following elements of G in the form ﬁaz_)b, for some integers a and b as in (b):

ou, uo—2u, u-lv-luv

ou = uov

w2y = uv?u = Uouv = uuv? = v?

u~tolyv = (vu)~"luv = (uo)~luv =1

(e) Prove that G is abelian and is isomorphic to Z, x Z,.
Proof. We already saw above that o = i and therefore G is abelian.

Letg: G- Z, x Z4 such that ¢ (uo?) = (W,zﬁ). Sinceu? =1 = (u) and =1 = (v) with orders
2 and 4 respectively. Therefore, since any two cyclic groups of the same order are isomorphic we see
that ¢ is an isomorphic map so that G = Z, x Z,. O

20. Let G = Z/24Z and let G = G/(12), where for each integer a we simplify notation by writing a as 4.
(a) Show that G=1{0,1,..,11}.

Proof. Since the order of G is 24 and (12) = {0,12} is of order 2 this means (12) will partition G into 12
disjoint sets so that the order of G is 12. Therefore, G = {0, 1, ..., T1). O

(b) Find the order of each element of G.
01 =1,1T1 = 12,21 = 6,13 = 4,15| = 12,16] = 2,17| = 12,18 = 3,19| = 4,|10| = 6,|11| = 12



(c) Prove that G = Z/127. (Thus (Z/247Z)/(127Z/24Z) = Z /127, just as if we inverted and canceled the
247s.)

Proof. Let ¢ : G — Z/ 127 such that ¢(4) = a. Obviously this is a bijective map and it is also a ho-
momorphism as both G and Z/12Z are both modulo 12 so that the group operation holds in both.
Therefore, G = Z/127Z. O

21. Let G = Z,4 x Z, be given in terms of the following generators and relations:
G=(x,ylxt=y*=1xy=yx)
Let G = G/(x%y?) (note that every subgroup of the abelian group G is normal).
(a) Show that the order of G is 8.

Proof. Since the order of G is 16 and (x?y?) = {1,x?y?} is of order 2 this means (x?y?) will partition G
into 8 disjoint sets so that the order of G is 8. O

(b) Exhibit each element of G in the form anb, for some integers a and b.

Since (x2y?) = {1,x2y2} then G = {1,X,x2 = yZ,x_3, Y, y_3, Xy, x3y = xy3}

(¢) Find the order of each of the elements of G exhibited in (b).

N =1,1K =412 =2 = 2,153 = 4,[7l = 4, 1y3] = 4, x| = 2, 1x3 = xy3| =2

(d) Prove that G = Z, x Z,.

Proof. Let ¢ : G — Z4 x Z, such that ¢(x?y?) = @(x*~b(xy)?) = (xb, (xy)b). Note that xy has order 2
and therefore ¢ will map this information over into Z,. A similar argument follows for x*~* and Z,.

Now, let’s show that this map is actually an isomorphism.

injective -

P(xy?) = p(xcy)

P(x™ b (xy)?) = p (x4 (xy)?)
(b, (xy)b) = (x4, (xy))
= a—-b=c—-d, b=d
= a=¢c, b=d

which shows that it is 1-1.

surjective -

p(xyt) = @(x* (xy)?) = (x*77, (xy)?)
which shows that it is onto.

homomorphism -

(p(x“ybx"yd) — 4)(x“+cyb+d)

— q)(x(u+c)—(b+d) (xy)b+d)




= (x(@+O=brd) | (yyybd)

= (x*Px, (xy)? (xy) )

= (7, () (x4, (xy)?)
= @7 (xy)?) @ (x= (xy)?)

= p(xy")p(xcy?)
showing that ¢ is a homomorphism.
Therefore, G = Z, x Z,. O
22,

(a) Prove thatif H and K are normal subgroups of a group G then their intersection H N K is also a normal
subgroup of G.

Proof. If H I Gand K < GthengHg ™! = Hand gKg~! = K for all ¢ € G. Therefore, for all x € H there
exists y € H such that gxg~! = y and similarly the same argument holds for K. Thus, forallx € H N K
there exists y € H N K such that gxg~! = y for all g € G. Therefore, ¢(HNK)¢g™' = HNK forallg € G
sothat HN K < G. O

(b) Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a
normal subgroup (do not assume the collection is countable).

Proof. If we have an arbitrary nonempty collection of normal subgroups of a group then with the same
argument used in the proof of part (a) we see that their intersection is also a normal subgroup. O

23. Prove that the join (cf. Section 2.5) of any nonempty collection of normal subgroups of a group is a
normal subgroup.
Proof. Let {H; | i € I} be a collection of normal subgroups of G and | = (|J,.; H;). We need to show that | is

a normal subgroup of G.

An element of ] will be of the form h{'h3* - hy" with €, = +1and h; € H, for some i € [ forall1 < j < n.
Then, g(hi'h3> - by )g™" = (ghy'g™") (ghy*g™") -+ (ghy'g™") for all g € G and since each (gh;*'g™") € H,; for
some i € I we see that g(h{'h3? - hy")g~! € J. Thus, ] < G. O

24. Prove that if N < G and H is any subgroup of Gthen N N H < H.

Proof. Since H is a group we obviously have that hHh~! = H and since N < G and H < G we also have that
hNh=! = N. Therefore, we must have that 1(N N H)h~! = N N H which implies that N N H < H. O

25.

(a) Prove that a subgroup N of G is normal if and only if gNg~! C N forall g € G.

Proof. If N < G then by definition ¢Ng=! = N for all ¢ € G and therefore we obviously have that
gNg=! C N. Conversely, if gNg=! C N forall ¢ € G then

g§Ng™' CN

g 'gNg~'g C ¢ 'Ng
N C ¢~ !Ng



but since this was for all g € G this is also true if we set ¢ = x~1,x € G since ¢ will be the inverse of
some other element in the group. Then

N C ¢ 'Ng

N C (x~1H-INx—1

N C xNx~1

and therefore, ¢gNg¢~! = N which shows that N < G. O

(b) Let G = GL,(Q), let N be the subgroup of upper triangular matrices with integer entries and 1’s on

the diagonal, and let ¢ be the diagonal matrix with entries 2,1. Show that gNg~! C N but g does not
normalize N.

Proof.
(1 a (20 a_Ll(1 0\_(3 0
N_{<0 1>|uEZ},g_(O 1) = g _5(0 2)_(0 1 so that we have
Nel = (2 O\(1 a\(5 0
78 =10 1)\o 1)\0 1
_(2 0 % a
0 1)L0 1
1 2a
=lo 1)€N =
§Ng™'CN
) ) 1 2a 1 a
This shows that ¢ does not normalize N because 0o 1)%lo 1) O

26. Leta, b € G.

(a) Prove that the conjugate of the product of 2 and b is the product of the conjugate of 2 and the conjugate
of b. Prove that the order of 2 and the order of any conjugate of a are the same.

Proof. The conjugate of the product of a and b is
glab)g™" = ga(g~lg)bg ™" = (gag™h)(gbg™")
which is the product of the conjugate of a and the conjugate of b.

Suppose the order of 4 is n. Then 4" = 1 and

1=gg™
— gang—l
= (8387 D)1(gag ™2+ (82871,
= (gag™")"
showing that the order of 2 and any conjugate of a are the same. O

(b) Prove that the conjugate of a~! is the inverse of the conjugate of 4.

Proof. ga='g™' = (¢ la1g™! = (gag™") ! =



(c) Let N = (S) for some subset S of G. Prove that N < G if gS¢~! C N forallg € G.

Proof. 1f gSg=! C N then for all ¢ € G,s € S we have that gsg=! € N. Since N is a group we also have
that (¢sg™1)(gs7l¢™) =1 € N = (gs7!¢7!) € Nforalls € S. Then, since N = (S) we see that
neEN = n=s{" s, fors; €S, ¢ = +1.

Therefore, gng™ = gsi' s,"¢g™! = (g57'¢™") -+ (gsw'g™") € N which shows that gNg=' C N so that
N <G. O

(d) Deduce that if N is the cyclic group (x), then N is normal in G if and only if for each g € G, gxg~! = x*

for some k € Z.

Proof. N is the cyclic group (x).

If N < G then for all g € G,x € N we have that gxg™! € N = g¢xg~! = x* for some k € Z.
Conversely, if gxg~! = x* for some k € Z, thengxg™! € Nforallx e N, €G = N <G.

Therefore, N is normal in G if and only if for each ¢ € G, gxg~! = x* for some k € Z. O

(e) Let n be a positive integer. Prove that the subgroup N of G generated by all the elements of G of order
n is a normal subgroup of G.

Proof. Let N = {x € G| x" = 1} and therefore for all ¢ € G,x € N we have that

1=gg™
— gxng—l
= (gxg™1(gxg )2 (838~ )
= (gxg™)"
showing thatgxg™! € N = N <G. O

27. Let N be a finite subgroup of a group G. Show that gNg=! C N if and only if gNg~! = N. Deduce that
Ng(N) = {g € G|gNg~! C N}.

Proof. From the proof of Exercise 25 we saw that a subgroup N of G is normal if and only if gNg~* C N for
all g € G, and therefore gNg¢~! = N if and only if gNg~! C N for all ¢ € G. However, because finite was
emphasized we will also show a proof that uses the size of N to verify the hypothesis.

Obviously, if gNg=! = N thengNg~! C N. Conversely, if gNg~! C N thenletp(x) = gxg~' forx €N, ¢ € G.
Then, we see that ¢ maps N into N. Therefore

@(x1) = ¢(x3)
gx187" = gxog7!

= X1 =X

This shows that ¢ is injective and therefore the image has the same amount of elements as the domain, i.e.,
IN| = [|gNg~!|. Since we assumed that ¢Ng~! C N, then if gNg~! has the same amount of elements as N
then they must be equal. Therefore, gNg~! = N. O

Additionally, since the definition of the normalizer of A in Gis thesetNg(A) = {g € G | gAg_l = A} [section
2.2] and we see that ¢gNg=! C N if and only if gNg~! = N then we can substitute this in the definition to
deduce that

NGg(N) ={g € GIgNg™' C N}



28. Let N be a finite subgroup of a group G and assume N = (S) for some subset S of G. Prove that an
element ¢ € G normalizes N if and only if gSg‘1 CN.

Proof. If an element ¢ € G normalizes N then by definition we have

gNg™' =N
= ¢Ng1CN
= g(s7's5? ~+s,)g L EN [s; €S, € = +1]
= (857'¢71)(gsy°¢ ™) - (gsw'g™) EN [s; € S, e; = +1]
=gsg ' eN [s € S]
= gSg‘1 CN
Conversely, if g5¢~! C N for some ¢ € G then we have that
gsg~ €N [s € S]
= (gs7'¢7 D) (gs2g™ ) - (gs'g™H EN [s; €8S, = +1]
= g(s{'s5? -+s,)g L EN [s; €S, = +1]
= ¢Ng1CN
=¢Ng 1 =N [proof of Exercise 27]
Therefore, an element ¢ € G normalizes N if and only if gS¢~! C N. O

29. Let N be a finite subgroup of a group G and suppose G = (T) and N = (S) for some subset S and T of G.
Prove that N is normal in G if and only if tSt~! C N forallt € T.

Proof. If N < G then from the proof of Exercise 28, since this exercise also had N = (S) for a subset S of G,
we know that gS¢=! C N. Then, sinceg € G = g € (T) = there exists ¢ € T so that

¢S¢1CN = tSt"!CNforallteT
Conversely, if tSt—1 C N for all t € T then

tSt-1C N
=tstleN [s € S]

Therefore, N is normal in G if and only if tSt1 C N forallt e T. O
30. Let N < G and g € G. Prove that gN = Ng if and only if g € Ng(N).

Proof. If gN = Ng then gN¢~! = N and therefore ¢ normalizes N so that ¢ € Ng(N). Conversely, if
¢ € Ng(N) then g normalizes N so that we have ¢gNg¢~! = N and therefore gN = Ng.

Therefore, gN = Ng if and only if g € Ng(N). O

31. Prove that if H < G and N is a normal subgroup of H then H < N (N). Deduce that Ng(N) is the
largest subgroup of G in which N is normal (i.e., is the join of all subgroups H for which N < H).

Proof. N <H = hNh~! = N forallh € H. Thus, h € N5 (N) therefore H < Ng(N). O



Since N < H < N (N) < G we deduce that the largest subgroup H of G where N is normal is Ng (N).
32. Prove that every subgroup of Qg is normal. For each subgroup find the isomorphism type of its corre-

sponding quotient. [ You may use the lattice subgroups for Qg in Section 2.5.]

Proof. The non-trivial subgroups of Qg are (—1), (i), (j), (k). (—1) commutes with all elements of Qg so it is
obviously normal. For the others

ji(=j) = —i € (i)
ki(—k) = —i € (i)
ij(—i) = —j € (j)
kj(—k) = —j € ¢
ik(—i) = —k € (k)
jk(—=j) = —k € (k)

showing that (i), (j), (k), (—1) are normal subgroups.

Therefore, all the subgroups of Qg are normal. O

Qg/1=Qgand Qg/Qs =1

Qg/(-1)y = {, 2,]_', k} where each element has order two (remember that the identity element of this quotient
group is the kernel). From the classification of groups of order 4 we know that this group is either isomor-
phic to V, or Z, and since every non-identity element has order 2, we know it must be isomorphic to V.
Therefore, Qg/{—1) = V,.

Qg /(i) = {T, ]_'} and therefore, since this is a group of order 2 it must be isomorphic to Z, since all groups have
the identity element and the other element multiplied by itself must be closed under the group operation,
ie., (]_'> = Qg /(i) = Z,. A similar argument holds for Qg/(j) and Qg/(k).

33. Find all normal subgroups of Dg and for each of these find the isomorphism type of its corresponding
quotient. [ You may use the lattice of subgroups for Dg in Section 2.5.]

The non-trivial subgroups of Dg are (s, r2), (r), (rs, 1), (s), (r?s), (r?), (rs), (r3s).
(s) and (r) cannot be normal as they do not commute with one another.

Nor are the subgroups (rs) — s(rs)s™! = sr & (rs), (r?s) — s(r?s)s™! = sr? & (r?s), (r3s) > s(r3s)s™ =sr> &
(r3s).

The center of Dg, (r?) is obviously normal and the quotient of this is isomorphic to V.

Additionally, the subgroups of order 4 are all normal, (s, 7?),(r), (sr,r?), and the quotient of these are all
isomorphic to Z,.

34. Let D,,, = (r,s | " = s? = 1,rs = sr~!) be the usual presentation of the dihedral group of order 2 and
let k be a positive integer dividing n.

(a) Prove that (r¥) is a normal subgroup of D,,,.

Proof. From Exercise 33 we know that (r) is a cyclic normal subgroup of D,,, with order n. Since k | n
we know that by Lagrange’s Theorem that (1) is a subgroup of (r). Additionally, we know that since

(%) < (r) A D,, = Np, ((r) = Dy,



and therefore, since all of D,, normalizes (r) it must also normalize the elements of (7).
Thus, (r*y < D,,,. O
(b) Prove that D,,,/(r*) = D,,.

Proof. Since (ry is a normal subgroup and k | n letd = n/k so that (rky has order d and therefore by La-

grange’s Theorem |D,,, / (rky| = 2k, i.e., there will be 2k cosets. The cosets will be {T, 7, r_z, v, 1557 k1)
and therefore D,,, /(rk) = Dy,. O

35. Prove that SL,(F) < GL,(F) and describe the isomorphism type of the quotient group (cf. Exercise 9,
Section 2.1).

Proof. For determinants we have the property that

1

det(ABC) = det(A) det(B) det(C) and det(A~1) = Jer )

and therefore we see that for any ¢ € GL,,(F) and s € SL,,(F) that

det(gsg™!) = det(g) det(s) det(¢g™!) = det(g) - 1 - det(g™!) = det(g)

! _ 1
det(g)
so that resulting matrix has determinant 1 and thus is in SL,, (F). Therefore, SL, (F) < GL,,(F).

The isomorphism type of the quotient group can be seen from the looking at the map det(GL,, (F)) — F*.
This is a group homomorphism from the argument of the proof above since the determinant of a product is
the product of the determinants. Additionally, the kernel of this homomorphism is SL, (F) as the identity
element in F* is 1. Then, as we saw in the text, since the multiplication of fibers is defined from the mul-
tiplication in F*, by construction the quotient group with this multiplication is naturally isomorphic to the
image of GL,,(F) under this homomorphism. Therefore, GL, (F)/SL,(F) = F*. O

36. Prove that if G/ Z(G) is cyclic then G is abelian. [If G/ Z(G) is cyclic with generator x Z(G), show that
every element of G can be written in the form x?z for some integer 4 € Z and some element z € Z(G).]

Proof. If G/ Z(G) is cyclic with generator x Z(G) the elements of G/ Z(G) are (xZ(G))* = x"Z(G) =
{x*Z(G) | a € Z}. Since this quotient will partition all of G we see that each element of G must be of the
form xz for some z € Z(G). Since the elements of Z(G) commute will all elements of G we see that G must
be abelian. O

37. Let A and B be groups. Show that {(a,1) | 2 € A} is a normal subgroup of A x B and the quotient of A x B
by this subgroup is isomorphic to B.

Proof. Let G=AxBand N = {(a,1) |a € A}.
Forall (a,b) € Gand (a,1) € N

(a,b)(a,1)(a,b)~! = (a,b)(a, 1) (a1, b7 1)
= (a,b)(1,b7h)
=(@,1) €N

which shows that all (4, b) normalizes all (g,1) therefore N < G.



G/N has elements
(a,b) = (a,b)N

However, (a,b) = (1,b) since (a,b) € (1,b)N. Therefore, every coset uniquely corresponds to an element of
B via the map

(a,b) «<— b

and since the multiplication is the same in B, we see that G/N = B. O

38. Let A be an abelian group and let D be the (diagonal) subgroup {(a,a) | 2 € A} of A x A. Prove that D is
a normal subgroup of A x A and (A x A)/D = A.

Proof. Since A is an abelian group so too is A x A and every subgroup of an abelian group is normal because
foralla € Aand n € N < A we see that
ana~' =aa"'n=n €N
Therefore, since D is a subgroup of A x A it must be a normal subgroup of A x A.
The quotient group (A x A)/D has elements of the from
(ay,a,)D
and since representatives are equal we can see that for (a;',a5') € D
(ay,8,)D = (ay,a,) (a3",a3")D = (a3, 1)D

for some a; € A. This representation is unique as it relies on the inverse of a,, which is unique. This shows
that each coset corresponds uniquely to an element of A.

Let ¢ : (AxA)/D — Asuch that (a,1)D 2, 2. Thisis well-defined, since the representation is unique, and it
is obviously a bijection. Now we need to check that it is a homomorphism.

p((ay,1)(a, 1)) = p((a1a;5,1))
= aqap

= ¢((a1, 1) p((ay, 1))
Therefore, ¢ is an isomorphism and therefore (A x A)/D = A. O

39. Suppose A is the non-abelian group S; and D is the diagonal subgroup {(a,a) | a € A} of A x A. Prove
that D is not normal in A x A.

Proof. Let (a,a) € D and (a,,a,) € A x A. Then

(ay,a5)(a,a)(ar,a,)~" = (ay,ay)(a,a) (a7',a5")
= (ayaay",a005") & D

Therefore, D is not normal in A x A. O

40. Let G be a group, let N be a normal subgroup of G and let G = G/N. Prove that ¥ and j commute in G
if and only if x"'y~!xy € N. (The element x~'y~lxy is called the commutator of x and y and is denoted by

[x,y].)



Proof. If X and i commute in G then

Xy =yx
xNyN = yNxN
xyN = yxN [N normal]
(yx)"lxyN =N
xly~lxyN =N

showing that x~1y~lxy € N

Conversely, if x"'y~lxy € N then

N=N
xlylxyyN =N [x~1y~lxy € N]
(yx)"lxyN =N
xyN = yxN
xNyN = yNxN [N normal]
Xy =yx

showing that ¥ and i commute in G.

Therefore, ¥ and ¥ commute in G if and only if x~'y~'xy € N. O

41. Let G be a group. Prove that N = (x~'y~lxy | x,y € G) is a normal subgroup of G and G/N is abelian
(N is called the commutator subgroup of G).

Proof. Letg € Gand x~'y~lxy €N, x,y € G. Then

gty taygTt =g(x g gy e gxg T gy)g !
= (gx g7y g Hgxg T (gyg™
= (gxg™ ) gyg™H M (gxg T (gyg™H
="y %Y, EN, x,,4, €G

Therefore, N is a normal subgroup of G. G/N has cosets of the form x = xN for x € G. Then, since

x~ly~lxy € N implies (x~'y~!xy)N = N. Therefore, for x,iy € G we would have that

xy = xNyN
= xyN

xy(x "y~ txy)N
=yxN

= yNxN

=yx

showing us that G/N is abelian. O

42. Assume both H and K are normal subgroups of G with H N K = 1. Prove that xy = yx for all x € H and
y € K. [Show x~1y~lxy € HNK.]



Proof. For x € H and y € K we have that yx~'y~! € H and xyx~! € K. Then
x(yx~ly~1) € H and (xyx~1)y~! € K and therefore xyx~'y~! € HN K
and thus xyx~1y~! = 1 since H N K = 1 we see that xy(yx) ™1 =1 = xy = yx. O

43. Assume P = {A; | i € I} is any partition of G with the property that P is a group under the ”quotient
operation” defined as follows: to compute the product of A; with A; take any elements; of A; and any element
a; of Aj and let A;A; be the element of P containing a,4; (this operation is assumed to be well-defined). Prove
that the element of P that contains the identity of G is a normal subgroup of G and the elements of P are
the cosets of this subgroup (so P is just a quotient group of G in the usual sense).

Proof. Let A, be the element of P that contains the identity of G. Then for any A; € P we have that
AiAgAj_l = AC Ed Llllﬂl_l = 1
as we can take any element from A; and A, and therefore A, is a normal subgroup of G.

The cosets of P/A, are:

Therefore, the elements of P are the cosets of this quotient group. O

3.2 MORE ON COSETS AND LAGRANGE’S THEOREM
Let G be a group.

1. Which of the following are permissible orders for subgroups of a group of order 120: 1,2,5,7,9,15,60,240?
For each permissible order give the corresponding index.

1,2,5,15,60and120, 60,24, 8,2

2. Prove that the lattice of subgroups of S; in Section 2.5 is correct (i.e., prove that it contains all subgroups
of S; and that their pairwise joins and intersections are correctly drawn).

Proof. The elements of S; have the cycle decompositions: 1, (1 2), (1 3), (23), (123), and (1 3 2). Since
|S3| = 3! = 6 and 6 has the factors 1,2,3,6 we see that the order of the nontrivial subgroups must be either
2 or 3. From the lattice in Section 2.5 we see that the subgroups of S5 are ((1 2)), ((1 3)),((2 3)),((1 2 3)),
where the orders are 2,2,2,3, respectively.

In Exercise 2, Section 1.5 we drew the group table for S; which showed that combinations (i.e., their pair-
wise joins and intersections) of these subgroups doesn’t yield any other subgroups and that the lattice of
subgroups of Sz in Section 2.5 is correct. O

3. Prove that the lattice of subgroups of Qg in Section 2.5 is correct.

Proof. Qg has order 8 and we saw earlier that all of its subgroups are normal. The subgroups (i), {j), (k) have
order 4 while (—1) has order 2. Once again, looking at the group table in Exercises 2, Section 1.5 we see that
these are all the subgroups and that the lattice of subgroups of Qg in Section 2.5 is correct. O

4. Show that if |G| = pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.
[See Exercise 36 in Section 1.]



Proof. G is either abelian or it’s not. If G is abelian, we are done. Therefore, let’s assume that G is non-abelian.
In Exercise 36, Section 1 we saw that if G/ Z(G) is cyclic then G is abelian. Taking the contrapositive of this
we see that since G is non-abelian, then G/ Z(G) is not cyclic. We know that G/ Z(G) is a quotient group since
Z(G) 4 G. Let’s suppose that Z(G) is nontrivial. Therefore, by Lagrange’s Theorem G/ Z(G) must either
have order p or 4. However, from Corollary 10, a group of prime order is cyclic, which is a contradiction.
Therefore, Z(G) must be trivial. O

5. Let H be a subgroup of G and fix some element g € G.
(a) Prove that gHg ™! is a subgroup of G of the same order as H.

Proof. Let h € H and for fixed element ¢ € G we have that ¢hg™! € ¢Hg™!. Since H is a group it is
closed under multiplication and inverses. Therefore, for h;,h, € H we have that h;h;! € H so that
ghihy;hg™t € gHg™! = ghy(gh,)™! € gHg™! so that gHg ! is also closed under multiplication and
inverses and by the subgroup criterion gHg ! is a subgroup of G.

Since ¢ is fixed, and each element of gHg ™! is of the form gh (where h can be the identity), we see that
lgHg™ 1| = |H|. O

(b) Deduce thatif n € Z* and H is the unique subgroup of G of order n then H < G.

Proof. 1t is easy to see that if i € H then h is also in gHg ™! so that H C ¢Hg™!. From the proof of part
(a) we saw that the orders of H and gHg ™! are equal, which in this case is 71, so these groups must be
equal. Therefore, since ¢Hg™! = H for any ¢ € G we see that H < G. O

6. Let H < G and let g € G. Prove that if the right coset Hg equals some left coset of H in G then it equals the
left coset gH and g must be in N (H).

Proof. If Hg is equal to some left coset of H, say aH for a € G then

Hg =aH
= g=a
= g =a
= Hg=gH
and therefore H < G, which means g must be an element in N (H). O

7. Let H < G and define a relation ~ on G be a ~ b if and only if b~'a € H. Prove that ~ is an equivalence
relation and describe the equivalence class of each a € G. Use this to prove Proposition 4.

Proof.
a~a = ala=1eHd = a~a [reflexive]
a~b=blaeH = b la)'=abeH = b~a [symmetric]

a~b = blaeH b~c = c'beH = (¢c'b)(b\a)=claeH = a~c [transitive]

Therefore, ~ is an equivalence relation as it is reflexive, symmetric, and transitive. The equivalence class of
each a € G is some coset aH. Using this face we see that if b='a € H then for h = b~a we have

bh=b(bla) =0 = ac€bH

and since representatives of a coset are equal we see that aH = bH, proving Proposition 4. O



8. Prove that if H and K are finite subgroups of G whose orders are relatively prime then H N K = 1.

Proof. By Lagrange’s Theorem, if H and K are finite subgroups of G whose orders are relatively prime, we
know that H and K cannot be subgroups of one another. Thatis,if H £« Kand K £ Hthen HNK=1. O

9. This exercise outlines a proof of Cauchy’s Theorem due to James McKay. Let G be a finite group and let p
be a prime dividing |G|. Let S denote the set of p-tuples of elements of G the product of whose coordinates
is 1:

S = {(xq, %0, 00, ) | X € G and x;x, x, =1}

(a) Show that S has |G[P~! elements, hence has order divisible by p.

Proof. From x;x, -+ x, = 1 we see that x,, is dependent on the other coordinates, x,, = (x1x; - x,_4 )L

Therefore, we can restate S as {(xq, x,, ... s Xp_1, (X Xp e xp_l)‘l) | x; € G}. From this we can see that S
will have order
1S = IGly - Gl - |Gl,—1 = G~

since for each coordinate in the p-tuples, there are |G| options. Obviously |G/P~! is divisible by p since p
divides |G|. O

Define the relation ~ on & by letting &« ~ B if § is a cyclic permutation of «.
(b) Show that a cyclic permutation on an element of S is again an element of S.

Proof. An element of S has the form (xq, x5, ... ) such that x; € G and whose product of coordinates
is equal to 1. Then, it is easy to to see that any cyclic permutation, say f = (x;, X; 11, ..., Xp, X1, -, Xi_1),
of these coordinates is another element of S as we still have a p-tuple with coordinates from G whose
product is equal to 1. O

(c) Prove that ~ is an equivalence relation on S.
Proof. & ~ a since « is the identity permutation of « [reflexive].

a ~ B = B ~ asince proof from part (b) showed us that a cyclic permutation of an element of S is
another element of S and therefore all the elements are permutations of one another [symmetric].

a~Band B ~ v = a ~ 7 since the composition of permutations is a permutation [transitive].
Therefore, ~ is an equivalence relation. O

(d) Prove that an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with
xP =1.

Proof. If (x,x, ..., x) withxP = 1 then since all cyclic permutations of this element still equal this element
then its equivalence class only has this one element.

Conversely, if an equivalence class only has one element then it is equal to its own permutations and
therefore we must have that (x, x, ..., x) with x¥ = 1.

Therefore, an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with
xP =1. O

(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime). Deduce that
IGIP~! =k + pd, where k is the number of classes of size 1 and 4 is the number of classes of size p.



Proof. From the proof of part (d) we saw that there exists an equivalence class with order 1. Suppose
that we do not have (x, x, ..., x) with x* = 1. Then we will have (x4, x5, ..., Xp) where some or all of the
x; differ. The equivalence relation mandates that all elements of an equivalence class are cyclic p-cycles
of each other which means we can only have cycles where every coordinate of the p-tuple is shifted
by the same amount. This is a subtle distinction that is crucial to understand but is necessary if every
element will be a permutation of each other. Thus, each equivalence class can only have p elements
since after p iterations will we arrive back to the same element of the equivalence class.

From part (a) we saw that S| = |GJP~! and since ~ partitions |S| it must partition IGPP~L. Tt will partition
it with k classes of order 1 and d classes of order p so that |G~ = k + pd. O

(f) Since {(1,1,...,1)} is an equivalence class of size 1, conclude from (e) that there must be a nonidentity
element x in G with ¥ = 1, i.e., G contains an element of order p. [Show p | k and so k > 1.]

Proof. From part (a) we saw that p divides |GP~!. From part (e) we saw that p divides k + pd which
implies p divides k and therefore k must be a multiple of p, showing that k > 1. Hence, there must be
a nonidentity element x in G with x¥ = 1. O

10. Suppose H and K are subgroups of finite index in the (possibly infinite) group G with |G : H| = m and
| G : K| = n. Prove that lem(m,n) < |G : H N K| < mn. Deduce that if m and n are relatively prime then
IG: HNK|=1|G : H|-|G : K|.

Proof. If we take the intersection of H and K then H N K can partition K into cosets and the elements in these
cosets will also be elements contained in the cosets of G partitioned by H. That is
K : HNK|<IG : Hl=m
where < is for less than or equal to. Now we can multiple both sides of the inequality with |G : K] to get
IG : K|-IK: HNK|<I|G : K|-|G : H =nm

K partitions G and H N K partitions K so therefore H N K partitions G and we see that |G : HNK| =G :
K|-1K : HNK]. This shows that n divides |G : H N K|. We could have also made the same argument using
H instead of K so therefore m also divides |G : H N K|. Since we know that m and n divide this, we get the
desired inequality (bounded below by lcm(m,n)) and from this we can see that when (m,n) = 1 that we
will have that it will be equal to mn and therefore |G : HNK|=1|G : H|-|G : K|. O

11. Let H < K < G. Prove that |G : H|=1|G : K|-|K : H|. (do not assume G is finite).

Proof. Let|G : K| =p, K : H| = gand then

P q
G=|JgK K=|]JKkH
i=1 j=1

K

C=

=>G=

P 4q
giH) = | J |J@kpH
1

i=1j=1

1j

which shows that G is the disjoint union of pg cosets. Therefore, the number of elements of the coset space
is
IG: H=pg=IG : K|-|K : H]

Therefore, |G : H =|G : K|-|K : H|. O



12. Let H < G. Prove that the map x — x~! sends each left coset of H in G onto a right coset of H and gives
a bijection between the set of left cosets and the set of right cosets of H in G (hence the number of left cosets
of H in G equals the number of right cosets).

Proof. Let ¢(x) = x~! and let ¢H be a left coset of H in G. Then for g,h,¢,h € gH

P(g1h) = ¢(g:h)
(g1~ = (g 7!
Wit =hlgy!
hh~lgr! = hhlgs !

gt =g3"
@gHt=(gHh
81=8

therefore, ¢ is injective.

We can also see that for g~'h~1 € gH we have
¢(g—1h—l) — (g—lh—l)—l — hg

which shows that ¢ is surjective and sends each left coset of H tin G onto a right coset of /1 and gives a
bijection between the set of left cosets and the set of right cosets of H in G (hence the number of left cosets
of H in G equals the number of right cosets). O

13. Fix any labeling of the vertices of a square and use this to identify Dg as a subgroup of S;. Prove that the
elements of Dg and ((1 2 3)) do not commute in S,.

Proof. Since the generators for Dy are s and 7, if we label the vertices of a square (starting with 1 in the top
right corner and then incremented clockwise) and look at the permutations of these numbers we see that
s=(24)and r = (1234). Then
(24)(123)=(1423), (123)(24)=(1243)
(1234)(123)=(1324), (123)(1234)=(1342)

Therefore, the elements of Dg and ((1 2 3)) do not commute in S,. O
14. Prove that S, does not have a normal subgroup of order 8 or a normal subgroup of order 3.

Proof. From Proposition 13, if H and K are finite subgroups of a group we have

\HIIK]|
IHNK|

Let H be a normal subgroup of S, of order 8. Then from Corollary 15 we know that for any K < S, that
HK is a subgroup of S,. Since there are 9 elements in S, of order 2, let the first 8 be elements in H so that K
will be the subgroup generated by the last element and therefore the intersection of H N K = 1. Then, from
Proposition 13 we have that |[HK| = 16 but this is a contradiction as S, has order 24 and 16 is not a divisor of
24. This is a contradiction. Therefore, there is no normal subgroup of order 8 in S,.

|[HK| =

Similarly, there are 8 elements in S, of order 3. If the first three comprised H then there would be another
element of order 3 that we could generate a subgroup from. However, using the same argument above we
would see that we would have a subgroup of order 9, which is not a divisor of 24.



Therefore, S, does not have a normal subgroup of order 8 or a normal subgroup of order 3. O
15. Let G = S, and for fixed i € {1,2, ..., n} let G; be the stabilizer of i. Prove that G, = S,,_;.

Proof. The stabilizer of i is the set G; = {c € G | ¢ (i) = i}. If we remove the 1-cycle of i (i.e., the cycle (i) in
the permutation o) for all ¢ € G, then we have the symmetric groupon () = {1,2,...,i—1,i+1,...,n} so that
|Q)f = n — 1. Two symmetric groups are isomorphic if the cardinality of the underlying sets being permuted
are equal. Therefore, G; = S,,_;. Furthermore, from Exercise 10 in Section 1.6, we saw that symmetric groups
S and Sq, are isomorphic if |A| = |Q)] (this showed an isomorphism exists). O

16. Use Lagrange’s Theorem in the multiplicative group (Z/pZ)* to prove Fermat’s Little Theorem: if p is a
prime thena” =a (mod p) foralla € Z.

Proof. Since p is prime the multiplicative group (Z/pZ)* has order p — 1. This is due to the fact that all
numbers less than p are coprime to p and therefore have multiplicative inverses. By Lagrange’s Theorem,
the order of the elements of this group must divide the order of the group. Then, let a be an element in
(Z/pZ)* so that (a) = {1,a,42,...,a°} where k | p—1 = kd = p—1forsomed € Z. Therefore we must
have that

=g =@@7"=19=1=1 (mod p)

so that multiplying the congruence by a factor of a we arrive at
a@1-1)=0 (modp) = 4’ =a (mod p)
which proves Fermat’s Little Theorem. O
17. Let p be a prime and let n be a positive integer. Find the order of p in (Z/(p" — 1)Z)* and deduce that
n|e@" —1) (here ¢ is Euler’s function).
Proof. The order of the element p is the smallest number k such that
pF=1 (modp"-1)
pF—=1=0 (modp"—1)
=p'-1|pF-1
= n=k

It cannot be a smaller number because then the divisor would be bigger than the dividend so we see that
the order of p is n. Since, by Lagrange’s Theorem, [p| must divide ¢(p" — 1) we see thatn | p(p" — 1). O

18. Let G be a finite group, let H be a subgroup of G and let N < G. Prove thatif [H|and |G : N|are relatively
prime then H < N.

Proof. If G is of prime order then the normal subgroups are trivial ones. Therefore, let’s assume that G is not

of prime order. Then the we can write the order of G as |G| = pg, for positive integers p and g4.

Let |G : N| = gso that [N| = p. Since (JH|,|G : NJ|) = 1 we see that H must not have any elements that
divide order g. Thus, H must have elements that have orders that divide p which means that the elements
of H are also elements of N which implies H < N.

Therefore, if [H| and |G : N| are relatively prime then H < N. O



19. Prove that if N is a normal subgroup of the finite group G and (IN|,|G : N|) = 1 then N is the unique
subgroup of G of order |N|.

Proof. If G is of prime order then the normal subgroups are trivial ones. Therefore, let’s assume that G is not
of prime order. Then the we can write the order of G as |G| = pq, for positive integers p and 4.

Let|G : N| = gsothat|N| = p. Since (IN|,|G : N|) = 1 we see that p and g are relatively prime and therefore
N must not have any elements that divide the order 4.

Similarly, any other subgroup of order p would also be relatively prime to g and therefore wouldn’t have
any elements that divide the order q. Therefore, this subgroup would have the same elements that N does,
showing that they are equal and thus N is the unique subgroup of G of order |N|.

Therefore, if N is a normal subgroup of the finite group G and (IN|,|IG : N|) = 1 then N is the unique
subgroup of G of order IN|. O

20. If A is an abelian group with A < G and B is any subgroup of G prove that A N B < AB.

Proof. Since A and B are both subgroups of G and A < G we know from Corollary 15 that AB is a subgroup
of G. Since AB is a group we can show that A N B < AB by looking at the normalizer of A N B in AB. Since
AB is a group we have that AB = BA which means that for an element ab € AB we have thatab = b'a’ which
is an element of BA. Therefore, for ab € AB we have that b'a’ gives us

(b/a/)g(b/a/>71 — b/a/garflblfl

=b'ga'a1p! [g € AN B]
=bgb'€eB = €AnNB [EANB = g € B]
Thus, we see that AN B < AB.
Therefore, if A is an abelian group with A < G and B is any subgroup of G prove that AN B < AB. O

21. Prove that Q has no proper subgroups of finite index. Deduce that Q/Z has no proper subgroups of
finite index. [Recall Exercise 21, Section 1.6 and Exercise 15, Section 1.]

Proof. Suppose that Q has a proper subgroup of finite index, say m. Since Q is abelian, the subgroup is
normal and partitions Q into m cosets so that the quotient group has order m. By Lagrange’s Theorem and
Corollary 9 we know that if x is an element in this quotient group then x™ = 1. However, since this quotient
group is divisible (Exercise 14, Section 1) we also have that there exists y in this quotient group such that
x™ =y, which is a contradiction since we have that x™ = 1. Therefore, Q has no proper subgroups of finite
index.

Suppose that Q/Z has a proper subgroup of finite index. Then, since the quotient group of a divisible
abelian group is divisible and abelian, the same argument as above will arrive at a contradiction. Therefore,
we deduce that Q/Z has no proper subgroups of finite index. O

22. Use Lagrange’s Theorem in the multiplicative group (Z/nZ)* to prove Euler’s Theorem: a?™ = 1
(mod n) for every integer a relatively prime to 1, where ¢ denotes Euler’s ¢-function.

Proof. The order or (Z/nZ)* is ¢(n). Therefore, from Corollary 9 and a € (Z/nZ)* we must have that

a?™ =1=1 (mod n).



Therefore, a?™ = 1 (mod n) for every integer a relatively prime to 1, where ¢ denotes Euler’s g-function.
O

23. Determine the last two digits of 33", [Determine 3'%° (mod ¢(100)) and use the previous exercise. ]

Proof. As the hint suggests, let us first determine 3% (mod ¢(100)). Since (3,9(100)) = 1 we can use
Euler’s Theorem to see that
3¢@100) =1 (mod ¢(100))

Since ¢(¢(100)) = 16 we therefore see that
3 =1 (mod ¢(100))
Using this, we can solve for 31 (mod ¢(100))
3100 = gl6-6+4 = (316)6.34 = (1)6.3* =81 =1 (mod ¢(100))

Now, if m = d + k¢(n), then
a" = g?tkem = gd (a#k = g (mod n)Therefore, we can see that using both the above expressions we get3®'” = 3! = 3

Therefore, the last two digits of 33" is 03. O

3.3 THE ISOMORPHISM THEOREMS
Let G be a group.

1. Let F be a finite field of order g and let n € Z*. Prove that |GL,(F) : SL,(F)| = q — 1. [See Exercise 35,
Section 1.]

Proof. From Exercise 35 in Section 1 we saw that SL,(F) < GL,(F) and GL,,(F)/SL, (F) = F* with the map
det(GL,(F)) — F*. Since det(GL,,(F)) — F* is an isomorphic map by Corollary 17(2) we see that |GL,,(F) :
SL, (F)| = lp(GL,(F))| = |F*|. Since the order of F is g, then the order of F* is g — 1 which are the nonzero
elements of the field.

Therefore, |GL,,(F) : SL,(F)|=g—1. O

2. Prove all parts of the Lattice Isomorphism Theorem.
The Fourth or Lattice Isomorphism Theorem:

Let G be a group and let N be a normal subgroup of G. Then there is a bijection from the set of subgroups A
of G which contain N onto the set of subgroups A = A/N of G/N. In particular, every subgroup of G is of the
form A/N for some subgroup A of G containing N (namely, its preimage in G under the natural projection
homomorphism from G to G/N). This bijection has the following properties: forall A,B < GwithN < A
and N < B,

1. A< Bifand only if A < B,



Proof. If A < B then we know that for x,y € A that xy~' € A. Then for @ € A we have that,

i=aNEA = €B [1€A = a€B]

=xy'NeEA = €B [a=xy ' €A = € B]

=xyleA =€cB
Therefore, by the subgroup criterion A < B.
Conversely, if A < B then we know that for ¥, € A that xy_‘l € A. Then
xyl=xy INEA —=€B = xw'€A =B
Therefore, by the subgroup criterion A < B.

_ifA<B,then|B : A|=|B : Al

Proof. From The Third Isomorphism Theorem we see that B/A = (B/N)/(A/N) = B/A and since they

are isomorphic there is an injective maps which implies B : Al = |B : Al.
. (A,B) = (A,B),
Proof. If g € (A,B) = (A,B)/N then

g — (ui‘l “.aflnb'l)ﬁ ”_bZn)N
— (ail __.ainN) (b'l)/l e b;}l/nN)
— (N - aS N) (BTN - BP'N)
€(A,B) = (A,B)C(A,B)

Ifg e (Z, E) then

g = (a]'N - a;"N)(b]'N --b}"N)
= (@' - N) G BN
— (ail ”.aZ)lbll)’l "'bZ”)N

€ (A,B) = (A,B)C(A,B)
Therefore, (A, B) = (Z, E).
.ANB :Zﬂg,and

Proof. If g € AN B = (AN B)/N then

g€ (ANB)N
€ AN N BN
€ANB
which implies that AN B C A N B.
If g € AN B then
g€ ANNBN

€ (ANB)N

O



which implies that A N B C A N B.

Therefore, ANB = AN B. O
5. A< Gifand onlyifAT < G.

Proof. If A 9 G then

gag~l =a [for some a € A and for all g € G]
= (gag " )N = a)N [N < G,N<A]
= ¢NaNg¢~N =aN [N is normal - kernel of a homomorphism - well defined]
— A < E

Conversely, if A <G then

¢NaNg~IN =aN

= ( gag‘l )N = (a)N [N is normal - kernel of a homomorphism - well defined]
= gqag" ! =a [for some a € A and for all g € G]
= A4G
Therefore, A < G if and only if A<G. O

3. Prove that if H is a normal subgroup of G of prime index p then for all K < G either
(i) K<Hor

(i) G=HKand K : KNH|=p.

Proof. Since H is a normal subgroup of G we know that for any K < G that HK is a subgroup of G.

G Gl IHK
(i) If G #+ HK then since % = %% = p we see that
IGI |HK]

(ii) If G = HK thensince |G : H| = p, wehave |[HK : H| = p and from The Second or Diamond Isomorphism
Theorem we know that HK/H = K/(K N H) which implies |[HK : H| = |[K : KNH|=p. If G # HK, since
H is normal in G we know that HK is a subgroup of G. Therefore, |G : HK]| must be a number that is less
than p. O

4. Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. Prove that
(CxD)<d(AxB)and AxB)/(CxD) = (A/C) x (B/D).

Proof. Since the Cartesian product is component wise we see that for (4,b) € A x Band (c,d) € C x D that

(a,b)(c,d)(a,b)~" = (a,b)(c,d)(a"!,b71)
= (aca~1,bdb™1)
= (c',d") € (CxD) [for some ¢’ € Cand d’' € D]



Showing that (C x D) < (A x B).

Let ¢ : (AxB)/(CxD) — (A/C) x (B/D) such that ¢((a,b)/(c,d)) = (a/c,b/d). This is a homomorphism
since

( (allb]) . (ﬂz, bz) ) — ( (alaz, blbz) )
(C1/d1) (C2/d2) (Clcz,dldz)

_ (may bib,

T\ o0y dqd,

= (4 ) (%) b

S\ dy )\ dy

_ (111,b1)> ((a21b2)>

-7 ( (er,dp) ) P\ (ep,dn)
It is easy to see that this is also an isomorphism since the coordinates of the tuples are elements from the
groups so injectivity and surjectivity follow easily.

Therefore, we see that (A x B)/(C x D) = (A/C) x (B/D). O

5. Let QD4 = (0, T) be the quasidihedral group described in Exercise 11 of Section 2.5. Prove that (o%) is
normal in QD;4 and use the Lattice Isomorphism Theorem to draw the lattice of subgroups of QD;4/ (o).
Which group of order 8 has the same lattice as this quotient? Use generators and relations for QD4 / (c*) to
decide the isomorphism type of this group.

Proof. QDqg = (0, T |08 =12 =1,07T = T03)

It is easy to manually verify (¢#) is normal in QD4 since the generators are 7 and ¢.

ocotcl=¢

tottl = 03703

4

Lot =103%]

[tT=1"
= 10?710°

=100°

= 77012

=o* e (b

Therefore, (c*) < QDy,.

QD16/(0*)

N

(%, 1ty (o) (0% T0o)

(%) (c®y (0%
2 BN I BN
(0%, 70?2y (0%, 1)  (0?) (toy  (103)
(v (ohH  eh (b
N S
(%)

(%)



The group of order 8 that has the same lattice as this quotient is Dg. The generators and relations for
QDyg/(0*y = (7,7 | =T = 1,07 = 103 = To~1) which is isomorphic to Dg. O

6. Let M = (u, v) be the modular group of order 16 described in Exercise 14 of Section 2.5. Prove that (v*) is
normal in M and use the Lattice Isomorphism Theorem to draw the lattice of subgroups of M/(v*). Which
group of order 8 has the same lattice as this quotient? Use generators and relations for M /(v*) to decide the
isomorphism type of this group.

Proof. M = (u,v | u? = v® = 1,0u = uv®) It is easy to manually verify (v*) is normal in M since the generators
are u and v.

votp~l

=0
uotu~1 = uvluod® [u=u"'ou=uv’
= uvuv'o
= uouov'®
= uuv*°
=v* € (vh)
Therefore, (v*) < M.
M/w*)
/
(u,v?) <uv)\ (v)
o wh @b
2 N
w0ty (wo*) (v
h @whH Wb
N
(v*)
(%)

The group of order 8 that has the same lattice as this quotient is Z, x Z,. The generators and relations for

M/* = (@,5|7 = = 1,5 = wod = o) which is isomorphic to Z, x Z,. O

7. Let M and N be normal subgroups of G such that G = MN. Prove that G/(M N N) = (G/M) x (G/N).
[Draw the lattice. ]

Proof. 1f we draw the lattice, similar to Figure 6 in the text, we see that since M and N are both normal in G,
both sides of the lattice give MN/M = M /(M NN) and MN/N = N/(MNN) from the Second Isomorphism
Theorem. Therefore, multiplying these together we see that
M/(IMNN)-N/MNN) =MN/MxMN/N
G/(IMNN) =2G/MxG/N [can combine similar cosets]

O

8. Let p be a prime and let G be the group of p-power roots of 1 in C (cf. Exercise 18, Section 2.4). Prove that
the map z — z? is a surjective homomorphism. Deduce that G is isomorphic to a proper quotient of itself.



Proof. G = {z € C |z’ =1 for some n € Z* and p prime} and let ¢ be the map z — z such that ¢ : G » G
and ¢(z) = z”. ¢ is a homomorphism since

@(2125) = (z129)F
-4
= @(z1)9(2,)

To show that ¢ is surjective we will need to show that for any element z € G that there exists anotherz € G
such that the criteria z" = 1 is still held. Let z € img so that

P(z1) =z

For z, to be an element in G it must be a p-power root of unity in C. Therefore, for some k € Z*, we must
have that (zl)pk = 1. Therefore

(zl)’”k = (Zl/PyP*

= (Zl/rf)P"+1 [k=n+1]
= (£V/pyrr"

= (Z)pn = 1

k
showing that z{ = 1 and therefore is in G. Thus, ¢ is surjective.

Since ¢ is surjective and kerg is the p-roots of unity (i.e., the kernel is not trivial and therefore ¢ is not
injective), by the First Isomorphism Theorem we can deduce that there is a proper quotient of G that is
isomorphic to G. O

9. Let p be a prime and let G be a group of order p*m, where p does not divide m. Assume P is a subgroup of
G of order p* and N is a normal subgroup of G of order p’n, where p does not divide n. Prove that |PNN| = p?
and [PN/N| = p*t. (The subgroup P of G is called a Sylow p-subgroup of G. This exercise shows that the
intersection of any Sylow p-subgroup of G with a normal subgroup N is a Sylow p-subgroup of N.)

Proof. Since P < G and N < G we know that PN < G. From Proposition 13 we know that [PN| = |P|IN|/|P N
N| = |PNN| = |P|IN|/IPN|. The order of PN is the number of elements that are in P and N, but those that
are not in both. Since |G| = p"m, |P| = p*?, and |N| = pbn, we know from Cauchy’s Theorem that G, P, and
N all have elements that have order p. Additionally, from Lagrange’s Theorem we know that the order of
the elements of a group must divide the order of the group, which shows that every element in P must be a
power of p. Therefore, the elements in N that are also in P are the elements that are a power of p. Thus, the
order of PN is p*n (i.e., the p’ elements in N are also in P so they were not counted) so we then see that

pp’n

IP N N| = [PIN|/IPN| = —— =p"
p?l

From this it is easy to see that

pun a—b
PN/N| = =
PN/NI= 250 =p



10. Generalize the preceding exercise as follows. A subgroup H of a finite group G is called a Hall subgroup
of G if its index in G is relatively prime to its order: (|G : H|,|H|) = 1. Prove that if H is a Hall subgroup of
Gand N < G, then H N N is a Hall subgroup of N and HN/N is a Hall subgroup of G/N.

Proof. If H is a Hall subgroup of G and N < G, to show that H N N is a Hall subgroup of N and HN/N is a
Hall subgroup of G/N, we will show that the indexes and orders of these subgroups divide |G : H| and |H]|
respectively. This will show that these divisors must also be relatively prime to each other.

First, to show that (IN : HN N|,|[H N N|) = 1 we will show that [N : H N N|divides |G : H|and |H N N|
divides |H|, respectively. From Second Isomorphism Theorem we see that

H/(HNN) = HN/N

so therefore |H N N| is a divisor of |[H| (isomorphism is injective, hence they have the same order). Since HN
is a subgroup of G we know that it divides the order of G and from Proposition 13 we see that

NI |HN]

HAN| ~ H
IHN| Gl _ |G|

_ — = —
HI THN| ~ H]

showing use that [N|/|H N N| is a divisor of |G|/|H|. Therefore, IN : HNN|,[HNN|) =1

Second, to show that (|G/N : HN/N|,|HN/N|) = 1 we will show that |G/N : HN/N| divides |G : H|and
|HH/N| divides |H|, respectively. We see from the above that since

H/(HNN) = HN/N

that [HN/N]| is a divisor of |H|. Then for |G/N|/|[HN/N| = |G|/|[HN| which we already showed divides
|G : H|. Therefore, ((G/N : HN/N|,|JHN/N|) = 1. O

3.4 COMPOSITION SERIES AND THE HOLDER PROGRAM

1. Prove that if G is an abelian simple group then G = Z, for some prime p (do not assume G is a finite
group).

Proof. Since G is abelian, any subgroup of G is normal. However, since G is a simple group we know that its
only normal subgroups are 1 and G. Therefore, since its only normal subgroups are 1 and G, it therefore,
does not contain any other subgroups.

We will now show that it must also be finite. Assume that G is infinite and that x € G such that x # 1. Then
we must have that H = (x) is a subgroup of G. If H # G, then we have a proper subgroup of G, which is a
contradiction, since G is a simple group. If H = G, then we have an infinite cyclic group, which we know
is isomorphic to Z but Z contains proper subgroups, which is also a contradiction. Therefore, G must be
finite.

Since G is finite, and its only subgroups are 1 and G, then by Lagrange’s Theorem it must be of prime order
since it doesn’t contain any other subgroups. Since G is of prime order, by Cauchy’s Theorem we know that
G must contain an element of prime order and therefore G must be generated by this element. Therefore G
is a cyclic group of prime order, G = Z,,. O



2. Exhibit all 3 composition series for Qg and all 7 composition series for Dg. List the composition factors in
each case.

Dag:

1<¢(s) (s, r*) < Dy
19 (r?s) < (s,1?) < Dg
1< (r?) (s, r*) < Dy
1< (r?) Q(r) I Dy

19 (r?) D (rs,1r?) 9 Dy
1< (rsy < (rs,r*) I Dy
1< (r¥s) < (rs,r?) 4 Dy

Qg:

1) DQg
1) <2Qg
1< (k) 2Qq

3. Find a composition series for the quasidihedral group of order 16 (cf. Exercise 11, Section 2.5). Deduce
that QD4 is solvable.

Since r commutes with all of QD4 we know that the subgroups generated from this are all normal. Ad-
ditionally, looking at the composition factors of the subgroups generated from r we see that they are all
simple. Therefore, a composition series for the quasidihedral group of order 16 is:

1< (rty < (%) < (r) < QDy4

Since each of these composition factors are abelian we see that G is solvable.

4. Use Cauchy’s Theorem and induction to show that a finite abelian group has a subgroup of order n for
each positive divisor n of its order.

Proof. Let G be a finite abelian group.

base case: |G| = 1, which is trivial.

induction hypothesis: |G| = n — 1. Suppose that subgroups of G exist forallk,1 <k <n—1, wherek | n—1.

induction step: |G| = n. Let m be a divisor of n. If m is prime, then by Cauchy’s Theorem there exists an
element of order m and thus a subgroup of order m. If m is not prime, then m is a composite number. Let
m = kp for some prime p. By Cauchy’s Theorem there is ¢ € G such that |g| = p and therefore [(g)| = p. Since
G is abelian, all of its subgroups are normal so we have (¢) < G = G/(g) and by the induction hypothesis
we have |G/(g)| = k (since p # 1 we know that we are in therange1 <k <n —1).

Therefore, for x € G/(g) we have that
K=k = ©OF=@gN =xg) = e

There are two possibilities for the value of x*. Oneis thatx* =1 € (¢) and the other is ¥ =1e (g) for
xk £ 1. If it is the later, we are done since |x| = kp = m, which shows that there is a subgroup of order m. If



it is the former then we have that (x) N (g) = 1, since the order of g is prime. Therefore,

(I _kp _
KyN(g 1

Thus, (x,g) = (x)(g) is a subgroup of G of order m. O

=m

KN =

5. Prove that subgroups and quotient groups of a solvable group are solvable.

Proof. A group G is solvable if there is a chain of subgroups
1=Gy 924G, 1G, 444G, =G
such that G, ,/G; is abelian fori = 0,1, ...,s — 1.

For N < Glet N; = G, N N. Since G; < G, we see that for x € N; and y € N, ; we have yxy~! € N. We
also have yxy~! € G, since G; < G,,. Therefore, yxy~! € G; N = N;. Thus, N; < N,,; and therefore we
have a chain of subgroups

1=Ny<dN; g---<adN, =N

Now we need to show that N, /N; is abelian. Note that
Ni = Gi ﬂN = Gi N (Gi+1 ﬂN) = Gi ﬂNiJrl.
and then by the Second Isomorphism Theorem we have that

Ni _ Niy1 GiNip < Gi+1
N;  GiNNiy G ~ G

since G; and N, are both subgroups of G,, ;. Therefore, since G,,;/G,; is abelian, all of its subgroups are as
well so we see that N, /N; is abelian. Therefore, subgroups of a solvable group are solvable.

Let N be a normal subgroup of G so that G/N is a quotient group. Then we have the chain of subgroups
1<IN<4G
But we know that G is solvable so we know that we also have the chain of subgroups
1=6p94G, 4G, 444G, =G

therefore N must be one of these subgroups. Let N = G;. Then, since N is normal we know that G/N is a
quotient group and from the Fourth Isomorphism Theorem we know that there is a bijection from the set

of subgroups A of G which contain N onto the set of subgroups A= A/N of G/N. Therefore, we know that
we will have the chain of subgroups

1=Gy/N 4Gy,1/N<--<4G,/N=G/N
Furthermore, from the Third Isomorphism Theorem we have that

Giz1/N _ Giy .
~ — <i<
G./N G, forallk<i<s

so that each factor of this chain of subgroups is also abelian. Therefore, quotient groups of a solvable group
are solvable. O

6. Prove part (1) of the Jordan-Ho6lder Theorem by induction on |G|.

Part (1) of the Jordan-Holder Theorem states that for a finite group G with G # 1 that



G has a composition series.
A composition series is a sequence of subgroups in G such that
1=Nyg<N{ <N, < <N 1 <N =G

where N; < N,,; and N, {/N; a simple group for0 <i <k —1.

Proof. Since G # 1 then |G| > 1.

base case: |G| = 2. Any group of order 2 has the composition series
1=149G=G

induction hypothesis: Suppose G, with |G| < n, has a composition series.

induction step: Let |G| = n. Then G is either simple or it is not. If G is simple, then from the same argument
as the base case we see that it has a composition series. If G is not simple then it has a normal subgroup
other than 1 and G, say N. Then G/N is a quotient group and since its order is less than 7, by the induction
hypothesis, it has a composition series

1=Gy<G, <-<G,=G
From the Fourth Isomorphism Theorem we know that this composition series corresponds to
N:G()SGlSSGs:G

and also that G; < G, if and only if EI < G;,4 so that by the Third Isomorphism Theorem we see that

Giy1 _ Gin
G G

IR

So that the composition factors are simple. Thus, N = Gy < G; < -+ £ G, = G is a composition series for G.

The order of N is also less than the order of G and it too, by the induction hypothesis, has a composition
series
1=N()SN1 S“'SNk=N

Putting these two composition series together we get the composition series for G
1=N0SN1S---SNSGlﬁ"'SGSIG

Therefore, by induction, all finite groups have a composition series. O
7. If G is a finite group and H < G prove that there is a composition series of G, one of whose terms is H.

Proof. From the proof of Exercise 6 we can see that in the composition series for G that the normal subgroup
N was one of the terms. In the same manner and derivation, we see that H is a term in the composition
series of G. 0

8. Let G be a finite group. Prove that the following are equivalent:
(i) Gis solvable.
(ii) Ghasachainofsubgroups: 1 = Hy < H; < H, < -- < H; = GsuchthatH, ;/H;iscyclic,0 <i<s=1.

(iii) all composition factors of G are of prime order.



(iv) Ghas a chain of subgroups: 1 = Ny < N; < N, < --- 4 N, = G such that each N; is a normal subgroup
of Gand N;,;/N, is abelian, 0 <i <t —1.

[For (iv), prove that a minimal nontrivial normal subgroup M of G is necessarily abelian and then use
induction. To see that M is abelian, let N < M be of prime index (by (iii)) and show that x~1y~!xy € N for

all x,y € M (cf. Exercise 40, Section 1). Apply the same argument to gNg~! to show that x~1y~lxy is in the

intersection of all G-conjugates of N, and use the minimality of M to conclude that x~1y~lxy = 1.]

Proof.
(i) — (ii): If G is solvable then there is a chain of subgroups

1:G03G13G233GS:G

such that G;,,/G; is abelian fori = 0,1, ...,s — 1. Since G,,/G; is abelian, we know that if its order can be
divided, that a subgroup exists. If its order cannot be divided then we know that the quotients G, /G; are
cyclic since they are of prime order [Corollary 10]. If it can be divided then we know that the quotients
G;,1/G; have a normal subgroup, say H. Then we must have the series

1<9H <Gy
and from the Fourth Isomorphism Theorem we know that there then exists the series
G dH DGy

Since G is finite, this process can be repeated until G;,,/H; do not contain anymore subgroups for all of
G;,1/G; in the series. Then, we will have a series such that all quotients are cyclic as desired.

(ii) — (iii): If G has a chain of subgroups: 1 = Hy < H; 9 H, < -+ < H, = G such that H;,/H; is cyclic,
0 < i < s =1, then all quotients are either of prime order or they aren’t. If they are, we are done. If not,
then for the quotients not of prime order, since the quotients are cyclic they are also abelian (since taking
powers of an element is commutative). From Exercise 4 we know that there exist subgroups for any divisor
of the quotients. Therefore in the same manner as (i) — (ii), using the Fourth Isomorphism Theorem, we
can construct a series were all the quotients are of prime order.

(iii) — (iv): If all composition factors of G are of prime order then they must be cyclic [Corollary 10] and
therefore abelian (since taking powers of an element is commutative). Let N < M be of prime index, where
M is assumed to be a minimal nontrivial subgroup of G. Therefore, in the quotient group M/N we have

Yy =% W y=1 < xylxyeN
gNg~1, for any ¢ € G is obviously a subgroup of G but it is also a subgroup of M since M is normal (i.e.
gNg~! C M). We will show that it is is normal in M. For it to be normal in M, forn € N and m € M, we
need to have
m(gng~ym=t € gNg= 1 (g tmg)n(g~tm~1g) e N
which we know is true since N is normal in M. Thus, gNg~! is a normal subgroup of M and by the same
argument above, we see that forall g € G

-1,,—-1

xly~txy e gNg™!

Which shows that x~'y~1xy is in the intersection of all G-conjugates of N. However

I=(]gNg™!
geG



is a normal subgroup of G since if x € I and ¢ € G, then we must have that x € N so that gxg~! and it must
be the trivial subgroup because if it wasn't this would contradict the minimality of M. Therefore, I must be
the trivial subgroup and

xly Ty =1€l

so that xy = yx for x,y € M. This shows that a minimal normal subgroup M must be abelian (we could
have shown this with M/N = M/1 = M, since M is minimal and N < M is of prime index, which shows
that M is abelian since the composition factors of prime index are abelian).

Now that we have shown that M is abelian, we will show by induction that there is a chain of normal
subgroups where the composition factors are abelian. Suppose that M, is a the minimal normal subgroup
of G. Then we have the chain

1dM;, 4G

Using the same argument as above, we must have that there is a minimal nontrivial normal subgroup of
G/M,, say M,, which is also abelian. Then we have

1<M, <G=G/M,
By the Fourth Isomorphism Theorem, there then exists the series
M; <M, 4G

From the two series above we see that M, = M, /M, is abelian and also that M, is normal. Therefore, since
G is finite, we can continue this same process a finite number of steps, say 7, to get the series

1aM; M, < 4dM, =G
Which shows that was required.

(iv) — (i): This is the definition of a solvable group. O

9. Prove the following special case of part (2) of the Jordan-Holder Theorem: assume the finite group G has
two composition series

1=N0ﬂN1ﬂﬂNr=Gand1=MoﬂMl SM2=G

Show thatr = 2 and that the list of composition factors is the same. [Use the Second Isomorphism Theorem. ]

Proof. If M; = N,_; then we see that the two composition series match up and we are done. Let’s assume
that M # N,_; and let H = N,_; N M. From the composition series we see that the composition factor
M/1 = M is simple, so therefore M does not have any nontrivial normal subgroups. It is easy to see that H
is normal in M and therefore it must be trivial.

Then, by the Second Isomorphism Theorem we have that

Nr—l ~ Nr—lM
N.nM M

where the left hand side evaluates to N,_;. Now, on the right hand side, we see that N,_; M must be normal
as the join of two normal subgroups is normal. Also, since N,_; is nontrivial (from its composition series),
we see that N,_; M is larger than M. Assume that N,_;M # G so that

M<N, M<G

and if we divide this out with M we see that

1<N,_M<G=G/M



However, we know that G/M is simple as it is a composition factor and therefore it doesn’t have any nontrivial
normal subgroups. Therefore, we have a contradiction. Therefore, we must have that N,_;M = G so that

we have
N,_ M

M
which we know doesn’t have any nontrivial normal subgroups. Therefore, we must have that ¥ = 2. The

composition factors for N,_; # M between the two composition series are G/N,_; = M and N,_;/1 =
G/M. O

N,_, = =~ G/M

10. Prove part (2) of the Jordan-Hoélder Theorem by induction on min{r, s}. [Apply the inductive hypothesis
to H = N,_; N M,_; and use the preceding exercises. |

Proof. Let G be a finite group with G # 1.
base case: From Exercise 9 we have already proven part (2) of the Jordan-H6lder Theorem for min{r,s} = 2.
induction hypothesis: Suppose part (2) of the Jordan-Holder Theorem holds for n < min{r, s}.

induction step: Let H = N,_; N M,_;, and two composition series for G:
1=NyodN; 4 dN,=GC1=MydaM; &--IM; =G
The composition series for G contain sub-composition series for N,_; and M,_; from the induction hypoth-
esis. If we have H = N,_; = M,_; then by the induction hypothesis we must have that
1=NydN;<---dN,11=MydM; <---<IM,_,;

are both of the same length, which shows that r = s and the composition factors for G are the composition
factors in the series plus G/N,_; = G/M,_;. On the other hand, if N,_; # M,_; then similar to the argument
used in the proof of Exercise 9 we must have that N,_;M,_; is normal and larger than M,_; as N,_; can’t be
trivial as it is part of the composition series. Then we must have a chain

Ms—l g Nr—lMs—l d G
which we can divide by M,_; to get the chain
I g Nr—lMs—l g a = G/Ms—l

which is a contradiction since G/M,_; is a composition factor of the series and must therefore be simple.
Thus, we must have that N,_; = M,_; showing thatr = s and that the two composition series are equivalent
with composition factors G/N,_; = G/M,_;. O

11. Prove that if H is a nontrivial normal subgroup of the solvable group G then there is a nontrivial subgroup
A of H with A < G and A abelian.

Proof. Since H < G and G is solvable we must have that G/N is abelian. Therefore for x,y € G we have that
(xH)(yH) = (yH)(xH)
<= [xH,yH]=H
= [x,y]lH=H
= [x,y]€H

which shows that A < H is the commutator subgroup of G. It was proved in Exercise 41, Section 3.1 that this
group is a normal subgroup of G. For x,y € G we have

(xH)(yH) = (yH)(xH) [G/H is abelian]



= xyH =yxH [H is normal]
= xy=yxeH

and therefore for [xy,y;], [x,,Y¥,] € H we have

([xy, y1 1H) ([x2, Yo 1H) = ([x5, o 1H) ([x1,y711H) [G/H is abelian]
= [x1,y11[%2, Y] = [X2, Y2 1[X1, V1]

showing that A is abelian. O

12. Prove (without using the Feit-Thompson Theorem) that the following are equivalent:
(i) every group of odd order is solvable

(ii) the only simple groups of odd order are those of prime order.

Proof.
(i) — (ii): If every group of odd order is solvable then let G be of odd order and simple. Then, since G is
simple we have the chain

149G

which shows that the quotient group G/1 = G must be abelian. Yet, all subgroups of an abelian group are
normal so this shows that the only subgroups of G are 1 and G. Therefore, by Lagrange’s Theorem we know
that the group must be of prime order.

(ii) — (i): If the only simple groups of odd order are those of prime order then let G be a simple group of
odd and prime order. Then, since G is simple and of odd and prime order we see from Lagrange’s Theorem
that its only subgroups are the 1 and G itself so that we have the chain

1<G

Additionally, we know that since G is of prime order that G is cyclic and G = Z, [Corollary 10]. Thus, G
must be abelian since taking powers of an element is commutative. Hence, G = G/1 is also abelian, showing
that G and thus every group of odd order is solvable. O

3.5 TRANSPOSITIONS AND THE ALTERNATING GROUP

1. In Exercises 1 and 2 of Section 1.3 you were asked to find the cycle decomposition of some permuta-
tions. Write each of these permutations as a product of transpositions. Determine which of these is an even
permutation and which is an odd permutation.

Proof.
Exercise 1:

c=(135)(24) = (24)(15)(13), e(c) = -1
T =(15)(23) = already a product of transpositions, €(7) =1
02 =(153) = (13)(15), e(c?) =1
cT=2534) = (24)(23)125), e(cT) = -1
To=(1243) = (13)(14)(12), e(to) =-1
20 = (135)(24) = (24)(15)(13), e(t?0) = —1



Exercise 2:

c=(113510)(3158)(414117129) = (110)(15)(113)(38)(315)(49)(412)(47)(411)(4 14), (o) = 1
T=(114)2915134)(310)(5127)(8 11) = (114)(24)(213)(215)(29)(3 10)(57)(5 12)(8 11), e(7) = —1
02 =(15)(3815)(41112)(7914)(1013) = (15)(315)(3 8)(4 12)(4 11)(7 14)(7 9)(10 13), e(c?) = 1
oT=(1113)(24)(59871015)(1314) = (13)(111)(24)(515)(510)(57)(58)(59)(13 14), e(cT) = —1
0= (14)(29)(3131215115)(8 10 14) = (14)(29)(35)(3 11)(3 15)(3 12)(3 13)(8 14)(8 10), e(tc) = —1
20 =(1215834141112137510) =
(110)(15)(17)(113)(112)(1 11)(1 14)(1 4)(1 3)(1 8)(1 15)(12), e(t27) = 1

O
2. Prove that 02 is an even permutation for every permutation .
Proof. €: S, — {£1} is a homomorphism. Therefore, for any permutation ¢ we have that
e(?) =e(c-0)
=€e(0)e(o)
=&EDHED =1
O

3. Prove that S, is generated by {(ii + 1) | 1 <i < n — 1}. [Consider conjugates, viz. (2 3)(12)(2 3)7L]
Proof. The text shows that S, is generated from its transpositions, S,, = ((ij) | 1 < i < j < n). Here we will
prove that S, is generated from the n — 1 transpositions

(12),23),...,(n—1n)

by showing that they produce each transposition (a b) in S,,. Since (a b) = (b a), without loss of generality
let a < b. We will show with induction on b — a that (a b) is a product of transpositions (i i + 1).

base case: For b — a = 1 we see that
(ab) =(aa+1)

is one of the transpositions of the generating set so it is trivially included.

induction hypothesis: Suppose (12), (23), ..., (n—1n) is a generating set for transpositions with a difference
upto,b—a=k-2>1.

induction step: Now we will show that (1 2), (2 3), ..., (n — 1 n) is a generating set for all of S,, by showing
that it generates all transpositions {(i j) | 1 < i < j < n}. The base case and induction hypothesis take care
of all transpositions up to a difference of k — 2. With conjugation we have:

(@ab)=@a+D@+1b)@a+ 1)1 (1)

and in order to generate all of S,, we need that b —a = k — 1. Suppose that b —a = k — 1. The first and third
transpositions on the right hand side of (1) are handled by the base case. The middle transposition on the
right hand side of (1) has a difference of

b—@+1)=b-a—-1=k-1-1=k-2
and is handled by the induction hypothesis.

Therefore, S,, is generated by {(ii+1) |1 <i<n—1}. O



4. Show that S,, = ((12),(123...n)) foralln > 2.

Proof. From Exercise 3, it suffices to show that ((12),(123...n)), for all n > 2, will produce {(ii+1) |1 <
i <n—1}. Let ¢ € 5, and note that for an n-cycle, say (123 ...n) we have that

o123 ... n)c L

If we let o (x) represent the number that is to the right of x in the permutation ¢ then x will be the number to
the left of the number ¢ (x) in the permutation 0! since ¢~ cycles in the opposite direction as . Looking
at the cycle decomposition above, let us see how the numbers are permuted. Starting on the right, choose
a number in ¢!, say ¢ (x). This will then point to the left, which by our convention would be, at x. Then,
the next step is to go to the n-cycle to the left and starting at x, we see that this would point to the right at
x + 1 (unless x = n, in which case this would point to 1). The next step is to then go this number in the
permutation ¢ and then this would point to ¢ (x + 1), to the right of x + 1. Therefore, we would have that
the above cycle decomposition is equal to the

c(123 ... n)oe~t = (1) 7 (2) ... 0(n))
With this in mind, now let’s take a look at the conjugation of the generators
(123 ...n)(12)(123 ... n)~ L = (¢ (1) 0(2)) = (23)
and continuing in this fashion we can see that we can generate the rest of {(ii+ 1) |1 <i < n — 1} with
(123 ... m*A2)123 ... m)* = (k) c*@) =k +1k+2)
which we can see is true for all n > 2.
Therefore, S,, = ((12),(123...n)) forall n > 2. O
5. Show that if p is prime, S, = (7, T) where ¢ is any transposition and 7 is any p-cycle.
Proof. Let us denote the transpositionas o = (a b), with1 <a < b < p. If b —a = 1 then from Exercise 4,
with a relabeling of the n elements to coincide with a and b we would have
Sp ={(ab), @b ..))
Ifb—a>1lett= (123 ... p) and note that the powers of T give

T=(12..p)
=013..p-1
™=(14..p-2)

™ l=(1p..2)
™w=1

What this shows that there exists a p-cycle that will have a difference of b and a amongst its entries. Note that
we would not have a p-cycle for every power of 7 if p were not prime (for example (123 4)% = (13)(24)).
Therefore, relabeling the power of 7 so that it is the p-cycle that coincides with a and b we have

Sp ={((ab),ab ..))

Therefore, if p is prime, S, = (¢, T) where ¢ is any transposition and 7 is any p-cycle. O

6. Show that ((1 3), (12 3 4)) is a proper subgroup of S,. What is the isomorphism type of this subgroup?



Proof. From the previous exercises, we know that in order to generate all of S, we need to be be able to
produce all transpositions that differ by 1. Therefore, in order to be able to generate all of S, with the
transposition of (1 3) we would need a power of (12 3 4) to sequentially have a difference of 2 between each
number of the cycle. However, if we let o = (1 2 3 4) we see that this is impossible as its powers are

c=(1234)
02 =(13)(24)
03 =(1432)
ct=1

Therefore, ((1 3), (12 3 4)) must be a proper subgroup of S;. ((13),(1234)) = Dg since (1 3) has order 2
and (1 2 3 4) has order 4, similar to s and r respectively. O

7. Prove that the group of rigid motions of a tetrahedron is isomorphic to A,. [Recall Exercise 20 in Section
1.7.]

Proof. From Exercise 20 in Section 1.7 we saw that the group of rigid motions of a tetrahedron are the per-
mutations

{1,(123), (132), (234), (243), (134), (143), (124), (142), (14)(23), (13)(24), (12) (34)}

and that they were a subgroup of S,. For this to be isomorphic to A, we need that each of these 12 permu-
tations are even. Thus, we need that e(¢) = 1, which the identity permutation obviously maps to 1. For the
other permutations, note that an m-cycle is an odd permutation if and only if m is even and that e(c) = 1 if
o is a product of an even number of transpositions, which shows that these are all even permutations.

Therefore, the group of rigid motions of a tetrahedron is isomorphic to Ay. O

8. Prove the lattice of subgroups of A, given in the text is correct. [By the preceding exercise and the
comments following Lagrange’s Theorem, A4 has no subgroup of order 6.]

Proof. From Exercise 7 we can see that all of the permutations of A, are accounted for in graph. In the graph
we can also see that the edges for the 3-cycles between 1 and A, are correct since the order of the 3-cycles is
3 and |A4l = 12. For ((12)(34)),((13)(24)),((14)(23)) it is easy to verity they each have order two. For
((12)(34),(13)(24)) weseethat (12)(34)(13)(24) = (14)(23)s0{((12)(34),(13)(24)) =4 and all
edges between subgroups is correct.

Thereofore, the lattice of subgroups of A, given in the text is correct. O
9. Prove that the (unique) subgroup of order 4 in A, is normal and is isomorphic to V.

Proof. Let the unique subgroup of order 4 in A4, ((12)(34), (13)(24)), be denoted by H. To show that H is
a normal subgroup of A, first note that since:

H < Ng(H) < A,

by Lagrange’s Theorem we must have that N (H) is of order 4, 6, or 12. To do this, we can see if any of the
generators from the subgroups of order 3 normalize it (no need to check the subgroups of order 2 as they
are already subgroups of this group).

(123)(12)(34)(123)"' = (14)(23)



(124)(12)34)(124)~1 =(13)(24)
(134)(12)(34)(134)71 = (14)(23)

Therefore, ((12)(3 4), (1 3)(2 4)) is normal in A;. The only reason we needed to check for three conjugate
elements is that this would make N (H) have at least 7 elements so we know it therefore must be equal to
all of A4. In particular, this group is isomorphic to V, since its a group of order 4 and each of its nontrivial
elements have order 2. O

10. Find a components series for A,. Deduce that A, is solvable.
Proof. From Exercise 9 we see that ((12)(3 4), (1 3)(2 4)) is normal in A, with order 4. Let us denote this
subgroup as N. We see that the component series

1<dN<SA,

has composition factors A;/N and N/1 = N. The former has prime order and is isomorphic to Z3, which is
abelan. The latter is isomorphic to V, as we saw in Exercise 9, which is also abelian.

Therefore, A, is solvable. O
11. Prove that S, has no subgroup isomorphic to Qg.

Proof. Qg has 3 cyclic subgroups of order 4. In Exercise 4 of section 1.3 we saw that S, has 6 4-cycles and all
6 of these 4-cycles are generated by the 3 subgroups of Qg. Therefore, if Qg was a subgroup of S, it would
need to contain all of these permutations. However, the square of a 4-cycle is a double transposition and this
two would need to be part of the group (closure under multiplication). This means Qg would also need to
contain V, as we saw from Exercise 10 that it was generated from two double transpositions. This would be
an additional 4 permutations to the previous 6 which is 10 and therefore more than the 8 elements of Qg.

Therefore, S, has no subgroup isomorphic to Qs. O
12. Prove that A,, contains a subgroup isomorphic to S,,_, for each n > 3.

Proof. Let o be a permutation of A, such that the last two elements of A,, are fixed. Theno € A,,_,. Let H
be the subgroup of A, such that it is generated by the permutations of A,_, and the transposition (n — 1 n).
Thatis, H = (A,_,, (n —1n)). In other words, H is the subgroup generated by all even permutations on the
first n — 2 elements and a transposition of the last two elements. The transposition (n — 1 n) will commute
with all the elements of A,_,. Therefore we have that:

IHl =2-1A,_5/ =15,

Now we will show that this group is isomorphic to S,,_,. Let ¢ be the map:

o is even

o
: S d H, = /
P on-2 () {0’(11 —1n), coisodd

If 0y and o, are both even or odd we have:

@(0107) = 010,
= @(0)@(03)



Whereas if one is odd and the other even, with say ¢; even and ¢, being odd, we have:
¢(0107) = 0105(n—1n)
= @(01)@(05)

Since the transposition (n — 1 n) commutes with o we still get the above if ¢, is odd and ¢ is even. Thus,
@ is a homomorphism. To see that ¢ is an isomorphism, we see that ¢ is one-to-one as it maps each unique
o € 5,_, toaunique ¢ € H and that ¢ is surjective as itisonto all of H as H = (A,,_,, (n — 1 n)).

Therefore S, _, = H, where H is a subgroup of A, showing that A,, contains a subgroup isomorphicto S,_,
for each n > 3. O

13. Prove that every element of order 2 in A,, is the square of an element of order 4 in S,,. [An element of
order 2 in A,, is a product of 2k commuting transpositions. ]

Proof. Let 0, be an element in A,, of order 2 and ¢, be an element in S, of order 4. Then, since ¢? = 1 and
o = 1 we have that:

o2 =ol
o, =0? [take square root on both sides]
Therefore, every element of order 2 in A,, is the square of an element of order4in S,,. O

14. Prove that the subgroup of A, generated by any element of order 2 and any element of order 3 is all of
Ay

Proof. Let H < A4 and K < A, such that |[H| = 2 and |K| = 3. Since these finite cyclic subgroups are both of
prime order, by Lagrange’s Theorem they cannot be subgroups of one another and therefore [H N K| = 1.
From the order formula we then see that |HK| = |H||K| = 6 and from the lattice of subgroups for A, in the
text we can see that A, does not have a subgroup of order 6.

Therefore (H,K) = Ay. O

15. Prove that if x and y are distinct 3-cycles in S with x # y~1, then the subgroup of S, generated by x and
yis Ay.

Proof. This can be proved via brute force by taking two 3-cycles in S, that are distinct and not inverses of
one another and computing all the combinations to finally arrive at A;. However, a simpler way to prove
this is by noting that the lattice of A, in the text does not contain any subgroups that are generated from two
distinct 3-cycles and therefore x and y must generate all of A,. O

16. Let x and y be distinct 3-cycles in S5 with x # y~1.
(a) Prove that if x and y fix a common element of {1, ..., 5}, then (x,y) = A,.

Proof. If x and y fix a common element of {1, ..., 5}, then x and y will permute the same elements as
was shown in Exercise 15, up to a relabeling. Therefore, (x,y) = A,. O

(b) Prove that if x and y do not fix a common element of {1, ..., 5}, then (x,y) = As.



Proof. If x and y do not fix a common element of {1, ..., 5}, then x and y will also permute the element
that was fixed in part (a). Since there would be five extra permutations of this element we see that
5-1A4 =5-12 = 60 = |As|. Therefore, (x,y) = As. O

17. If x and y are 3-cycles in S,,, prove that (x, y) is isomorphic to Z3, A, A5 or Z3 x Zs.

Proof. If x = y~! or x = y, then (x,y) = Z; since the generators share the same elements. If x # y~1,
then (x,y) = A, if the 3-cycles share two common elements, as seen in Exercise 15. If the 3-cycles only
share a single common element then (x,y) = As, as seen in Exercise 16. If the 3-cycles don’t share any
common elements then x o y = x o y whereas x o x or y o y will permute into other elements. Therefore,
x,y) =23 xZy={(x,y) | x,y € Z3}. O



