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Chapter 3 - Quotient Groups and Homomorphisms

Exercises:

3.1 DEFINITION AND EXAMPLES

Let 𝐺 and 𝐻 be groups.

1. Let𝜑 ∶ 𝐺 → 𝐻 be a homomorphismand let𝐸 be a subgroupof𝐻. Prove that𝜑−1(𝐸) ≤ 𝐺 (i.e., the preimage
or pullback of a subgroup under a homomorphism is a subgroup). If 𝐸 ⊴ 𝐻 prove that 𝜑−1(𝐸) ⊴ 𝐺. Deduce
that ker𝜑 ⊴ 𝐺.

Proof. Since 𝐸 is a subgroup of 𝐻 we know it contains the identity 1𝐻 and since we know that homomor-
phisms map identities to identities, i.e., 𝜑(1𝐺) = 1𝐻 we see that

𝜑−1(1𝐻) = 𝜑−1(𝜑(1𝐺))
= 1𝐺

If 𝑥, 𝑦 ∈ 𝜑−1(𝐸), say 𝜑(𝑥) = 𝑎, 𝜑(𝑦) = 𝑏, where 𝑎, 𝑏 ∈ 𝐸. Then 𝜑(𝑦−1) = 𝜑(𝑦)−1 = 𝑏−1 [Proposition 1 (2)]
and 𝑏−1 ∈ 𝐸 since 𝐸 is a group and contains inverses.

𝑎𝑏−1 = 𝜑(𝑥)𝜑(𝑦)−1

𝑎𝑏−1 = 𝜑(𝑥)𝜑(𝑦−1) [Proposition 1 (2)]
𝑎𝑏−1 = 𝜑(𝑥𝑦−1) [𝜑 is a homomorphism]

𝜑−1(𝑎𝑏−1) = 𝑥𝑦−1 [applying 𝜑−1 to both sides]

Thus, 𝑥𝑦−1 ∈ 𝜑−1(𝐸) and therefore by the subgroup criterion 𝜑−1(𝐸) ≤ 𝐺.

If 𝐸 ⊴ 𝐻 then for all ℎ ∈ 𝐻 we have that ℎ𝐸ℎ−1 = 𝐸. Let 𝑔1, 𝑔2 ∈ 𝐺 such that 𝑔1 = 𝜑−1(ℎ) and 𝑔2 = 𝜑−1(ℎ−1)
so that

ℎ𝐸ℎ−1 = 𝐸 [𝐸 ⊴ 𝐻]
𝜑−1(ℎ𝐸ℎ−1) = 𝜑−1(𝐸) [applying 𝜑−1 to both sides]

𝜑−1(ℎ)𝜑−1(𝐸)𝜑−1(ℎ−1) = 𝜑−1(𝐸) [𝜑 is a homomorphism]
𝑔1𝜑−1(𝐸)𝑔−1

2 = 𝜑−1(𝐸) [Proposition 1 (2) for 𝑔2]

Additionally, since this is true for all of ℎ ∈ 𝐻 it is also true for all 𝑔 ∈ 𝐺 as 𝑔1 and 𝑔2 where the fibers for ℎ
and ℎ−1 (i.e., 𝜑(𝑔1) = ℎ, 𝜑(𝑔2) = ℎ−1). Therefore, 𝜑−1(𝐸) ⊴ 𝐺

Furthermore, since 1𝐻 ∈ 𝐸 and the ker𝜑 = {𝑔 ∈ 𝐺 ∣ 𝜑(𝑔) = 1} we see that the above proof can be extended
to the kernel of 𝜑 such that

𝑔1𝜑−1(1𝐻)𝑔−1
2 = 𝜑−1(1𝐻)

𝑔1𝜑−1(𝜑(𝑔))𝑔−1
2 = 𝜑−1(𝜑(𝑔)) [definition of kernel]

𝑔1𝑔𝑔−1
2 = 𝑔

which is true as 𝐺 is a group. Thus, we deduce that ker𝜑 ⊴ 𝐺.



2. Let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism of groups with kernel 𝐾 and let 𝑎, 𝑏 ∈ 𝜑(𝐺). Let 𝑋 ∈ 𝐺/𝐾 be the fiber
above 𝑎 and let 𝑌 be the fiber above 𝑏, i.e., 𝑋 = 𝜑−1(𝑎), 𝑌 = 𝜑−1(𝑏). Fix an element 𝑢 of 𝑋 (so 𝜑(𝑢) = 𝑎).
Prove that if 𝑋𝑌 = 𝑍 in the quotient group 𝐺/𝐾 and 𝑤 is any member of 𝑍, then there is some 𝑣 ∈ 𝑌 such
that 𝑢𝑣 = 𝑤. [Show 𝑢−1𝑤 ∈ 𝑌.]

Proof. Suppose 𝑢 ∈ 𝑋 and 𝑤 ∈ 𝑍. Let 𝑣 = 𝑢−1𝑤. Then

𝜑(𝑣) = 𝜑(𝑢−1𝑤)
= 𝜑(𝑢−1)𝜑(𝑤)
= 𝜑(𝑢)−1𝜑(𝑤)
= 𝑎−1𝑎𝑏 [𝑍 is defined to be the fiber above the product 𝑎𝑏]
= 𝑏

Thus, 𝑣 ∈ 𝑌.

Therefore, if 𝑋𝑌 = 𝑍 in the quotient group 𝐺/𝐾 and 𝑤 is any member of 𝑍, then there is some 𝑣 ∈ 𝑌 such
that 𝑢𝑣 = 𝑤.

3. Let A be an abelian group and let 𝐵 be a subgroup of 𝐴. Prove that 𝐴/𝐵 is abelian. Give an example of a
non-abelian group 𝐺 containing a proper normal subgroup 𝑁 such that 𝐺/𝑁 is abelian.

Proof. To show that 𝐴/𝐵 is abelianwemust show that its elements commute. The elements of 𝐴/𝐵 are the left
or right cosets. Let 𝑋, 𝑌 ∈ 𝐴/𝐵 where for any 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑌 we have 𝑋 = {𝑢𝑏 ∣ 𝑏 ∈ 𝐵}, 𝑌 = {𝑣𝑏 ∣ 𝑏 ∈ 𝐵}.
Thus, since 𝐴 is abelian and its elements commute we see that

𝑋𝑌 ⟹ (𝑢𝑏)(𝑣𝑏) = (𝑣𝑏)(𝑢𝑏) ⟹ 𝑌𝑋

Therefore, 𝐴/𝐵 is abelian.

An example of a non-abelian group 𝐺 containing a proper normal subgroup 𝑁 such that 𝐺/𝑁 is abelian is
𝐺 = 𝐷8 and 𝑁 = ⟨𝑟2⟩ which was shown in the examples to be isomorphic to the Klein 4 group which is
abelian.

4. Prove that in the quotient group 𝐺/𝑁, (𝑔𝑁)𝛼 = 𝑔𝛼𝑁 for all 𝛼 ∈ ℤ.

Proof. Since𝐺/𝑁 is a quotient group𝑁 is the kernel of some homomorphism and byTheorem 3, this quotient
group has elements of left cosets 𝑔𝑁 with the operation defined by

𝑔1𝑁 ∘ 𝑔2𝑁 = (𝑔1𝑔2)𝑁

Therefore, for any 𝛼 ∈ ℤ we have that

(𝑔𝑁)𝛼 = (𝑔𝑁)1 ⋯ (𝑔𝑁)𝛼 = (𝑔𝛼)𝑁

Therefore, in the quotient group 𝐺/𝑁 we have that (𝑔𝑁)𝛼 = 𝑔𝛼𝑁 for all 𝛼 ∈ ℤ.

5. Use the preceding exercise to prove that the order of the element 𝑔𝑁 in 𝐺/𝑁 is 𝑛, where 𝑛 is the smallest
positive integer such that 𝑔𝑛 ∈ 𝑁 (and 𝑔𝑁 has infinite order if no such positive integer exists). Give an
example to show that the order of 𝑔𝑁 in 𝐺/𝑁 may be strictly smaller than the order of 𝑔 in 𝐺.



Proof. Let 𝑔 ∈ 𝐺 and 𝑔𝑚 = 1 with 𝑚 being the smallest integer with this property. Let’s also suppose that
the order of 𝑔𝑁 is 𝑛. Then, since 𝑁 is the identity element in 𝐺/𝑁 we see that

(𝑔𝑁)𝑚 = 𝑔𝑚𝑁 = 𝑁

Thus, since the order of 𝑔𝑁 was given to be 𝑛 we also see that

∣𝑔𝑁∣ = 𝑛 ⟹ (𝑔𝑁)𝑛 = 𝑁 ⟹ 𝑔𝑛𝑁 = 𝑁

and 𝑔𝑛 ≠ 1 as 𝑚 was the smallest integer with this property so therefore 𝑔𝑛 must be an element of 𝑁.
Additionally 𝑛 is the smallest positive integer such that 𝑔𝑛 ∈ 𝑁 [we know it is the smallest positive integer
from the definition of order].

For an example showing the order of 𝑔𝑁 in 𝐺/𝑁 being strictly smaller than the order of 𝑔 in 𝐺, let us take
𝐺 = 𝑍4, the cyclic group of order 4. Let 𝑔 ∈ 𝐺 such that 𝑔4 = 1 and 𝑁 = {1, 𝑔2} is a normal subgroup (this
can easily be shown by conjugation). Then, 𝑔𝑁 = {𝑔, 𝑔3} and we see that (𝑔𝑁)2 = 𝑔2𝑁 = {𝑔2, 1} = 𝑁 so
therefore the order of 𝑔𝑁 is 2 while the order of 𝑔 is 4.

6. Define 𝜑 ∶ ℝ× → {±1} by letting 𝜑(𝑥) be 𝑥 divided by the absolute value of 𝑥. Describe the fibers of 𝜑 and
prove that 𝜑 is a homomorphism.

Proof. The fibers of 𝜑 are the positive and negative elements of ℝ×. That is 𝜑−1(±1) = {±𝑥 ∣ 𝑥 ∈ ℝ×}

Let 𝑥, 𝑦 ∈ ℝ×. Then
𝜑(𝑥𝑦) = 𝑥𝑦

|𝑥𝑦| = 𝑥
|𝑥| ⋅ 𝑦

|𝑦| = 𝜑(𝑥)𝜑(𝑦)

Therefore, 𝜑 is a homomorphism.

7. Define 𝜋 ∶ ℝ2 → ℝ by 𝜋((𝑥, 𝑦)) = 𝑥 + 𝑦. Prove that 𝜋 is a surjective homomorphism and describe the
kernel and fibers of 𝜋 geometrically.

Proof. First, let’s show that 𝜋 is a homomorphism. Let 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℝ2 so that

𝜋((𝑥1, 𝑦1) + (𝑥2, 𝑦2)) = 𝜋((𝑥1 + 𝑥2, 𝑦1 + 𝑦2)) [vector addition in ℝ2]
= (𝑥1 + 𝑥2) + (𝑦1 + 𝑦2)
= (𝑥1 + 𝑦1) + (𝑥2 + 𝑦2)
= 𝜋((𝑥1, 𝑦1)) + 𝜋((𝑥2, 𝑦2))

Therefore, 𝜋 is a homomorphism. It is easy to see that this is a surjective homomorphism since any element
of ℝ can be produced from the components of the vector in ℝ2, i.e., 𝑧 = 𝑥 + 𝑦 ∈ ℝ ⟹ (𝑥, 𝑦) ∈ ℝ2.

Let the coordinate axis of ℝ2 be 𝑥 and 𝑦. Then the kernel of 𝜋 is the line 𝑦 = −𝑥 and the fibers of 𝜋 are the
summations of the vector projections on the axis 𝑥 and 𝑦.

8. Let 𝜑 ∶ ℝ× → ℝ× be the map sending 𝑥 to the absolute value of 𝑥. Prove that 𝜑 is a homomorphism and
find the image of 𝜑. Describe the kernel and the fibers of 𝜑.

Proof. Let 𝑥, 𝑦 ∈ ℝ× so that
𝜑(𝑥𝑦) = |𝑥𝑦| = |𝑥||𝑦| = 𝜑(𝑥)𝜑(𝑦)

Therefore, 𝜑 is a homomorphism. The image of 𝜑 is ℝ+. The kernel of 𝜑 is {±1} and the fibers of 𝜑 are
𝜑−1(𝑎) = {±𝑎 ∣ 𝑎 ∈ ℝ×}.



9. Define 𝜑 ∶ ℂ× → ℝ× by 𝜑(𝑎 + 𝑏𝑖) = 𝑎2 + 𝑏2. Prove that 𝜑 is a homomorphism and find the image of 𝜑.
Describe the kernel and the fibers of 𝜑 geometrically (as subsets of the plane).

Proof. Let 𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖 ∈ ℂ× so that

𝜑((𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)) = 𝜑((𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖)
= (𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑑)2

= (𝑎𝑐)2 − 2𝑎𝑐𝑏𝑑 + (𝑏𝑑)2 + (𝑎𝑑)2 + 2𝑎𝑑𝑏𝑐 + (𝑏𝑐)2

= (𝑎𝑐)2 + (𝑏𝑑)2 + (𝑎𝑑)2 + (𝑏𝑐)2

= (𝑎2 + 𝑏2)(𝑐2 + 𝑑2)
= 𝜑(𝑎 + 𝑏𝑖)𝜑(𝑐 + 𝑑𝑖)

Therefore, 𝜑 is a homomorphism. The image of 𝜑 is the square of the modulus of the complex vector, 𝑎 + 𝑏𝑖.
The kernel of 𝜑 is the unit circle in ℂ× since these complex numbers all have norm equal to 1. The fibers
of 𝜑 are complex numbers that have the same norms. Thus, the fibers of 𝜑 are circles in the complex plane
centered at the origin.

10. Let 𝜑 ∶ ℤ/8ℤ → ℤ/4ℤ by 𝜑(𝑎) = 𝑎. Show that this is well-defined, surjective homomorphism and
describes its fibers and kernel explicitly (showing that 𝜑 is well-defined involves the fact that 𝑎 has a different
meaning in the domain and range of 𝜑).

Proof. 𝜑 is obviously a homomorphism as

𝜑(𝑎 + 𝑏) = 𝜑(𝑎 + 𝑏) = 𝑎 + 𝑏 = 𝑎 + 𝑏 = 𝜑(𝑎) + 𝜑(𝑏)

Additionally, it is trivially surjective as 𝜑(𝑎) = 𝑎. To see that it is well-defined we can manually check that
for all elements of the domain it maps to an element in the codomain.

𝜑(0) = 0
𝜑(1) = 1
𝜑(2) = 2
𝜑(3) = 3
𝜑(4) = 0
𝜑(5) = 1
𝜑(6) = 2
𝜑(7) = 3

The kernel of 𝜑 is {0, 4} and the fibers of 𝜑 are the sets {𝑎, 𝑎 + 4 ∣ 𝑎 ∈ ℤ/4ℤ}.

11. Let 𝐹 be a field and let 𝐺 = {(𝑎 𝑏
0 𝑐) ∣ 𝑎, 𝑏, 𝑐 ∈ 𝐹, 𝑎𝑐 ≠ 0} ≤ 𝐺𝐿2(𝐹).

(a) Prove that the map 𝜑 ∶ (𝑎 𝑏
0 𝑐) ↦ 𝑎 is a surjective homomorphism from 𝐺 onto 𝐹× (recall that 𝐹× is the

multiplicative group of nonzero elements in 𝐹). Describe the fibers and kernel of 𝜑.



Proof. Let (𝑎1 𝑏1
0 𝑐1

) , (𝑎2 𝑏2
0 𝑐2

) ∈ 𝐺 so that

𝜑((𝑎1 𝑏1
0 𝑐1

) (𝑎2 𝑏2
0 𝑐2

)) = 𝜑 ((𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑐2
0 𝑐1𝑐2

)) = 𝑎1𝑎2 = 𝜑 ((𝑎1 𝑏1
0 𝑐1

)) 𝜑 ((𝑎2 𝑏2
0 𝑐2

))

Thus, 𝜑 is a homomorphism and is surjective as 𝑎 can be all of 𝐹×. The kernel of 𝜑 is the group of

elements(1 𝑏
0 𝑐). The fibers of𝜑 for a given 𝑎 are𝜑−1(𝑎) = {(𝑎 𝑏

0 𝑐) ∣ 𝑎 ∈ 𝐹×}, the collection ofmatrices
with matching entries in the position of 𝑎.

(b) Prove that the map 𝜓 ∶ (𝑎 𝑏
0 𝑐) ↦ (𝑎, 𝑐) is a surjective homomorphism from 𝐺 onto 𝐹× × 𝐹×. Describe

the fibers and kernel of 𝜓.

Proof. Let (𝑎1 𝑏1
0 𝑐1

) , (𝑎2 𝑏2
0 𝑐2

) ∈ 𝐺 so that

𝜑 ((𝑎1 𝑏1
0 𝑐1

) (𝑎2 𝑏2
0 𝑐2

)) = 𝜑 ((𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑐2
0 𝑐1𝑐2

))

= (𝑎1𝑎2, 𝑐1𝑐2)
= (𝑎1, 𝑐1)(𝑎2, 𝑐2)

= 𝜑 ((𝑎1 𝑏1
0 𝑐1

))𝜑((𝑎2 𝑏2
0 𝑐2

))

Thus, 𝜑 is a homomorphism and is surjective as 𝑎 and 𝑐 can all of 𝐹× so that (𝑎, 𝑐) is all of 𝐹× × 𝐹×.

The kernel of 𝜑 is the group of elements (1 𝑏
0 1). The fibers of 𝜑 for a given 𝑎 and 𝑐 are 𝜑−1((𝑎, 𝑐)) =

{(𝑎 𝑏
0 𝑐) ∣ 𝑎, 𝑐 ∈ 𝐹×}, the collection of matrices with matching entries in the positions of 𝑎 and 𝑐.

(c) Let 𝐻 = {(1 𝑏
0 1) ∣ 𝑏 ∈ 𝐹}. Prove that 𝐻 is isomorphic to the additive group 𝐹.

Proof. Let 𝜑 ∶ 𝐻 → 𝐹 such that 𝜑 ((1 𝑏
0 1)) = 𝑏, for 𝑏 ∈ 𝐹. Then 𝜑 is a bijective homomorphism from

𝐻 to 𝐹 and therefore 𝐻 is isomorphic to 𝐹 (the proof of 𝜑 being a surjective homomorphism is similar
to part (a) and we can see it is injective as 𝜑(𝑏1) = 𝜑(𝑏2) ⟹ 𝑏1 = 𝑏2).

12. Let 𝐺 be the additive group of real numbers, let 𝐻 be the multiplicative group of complex numbers
of absolute value 1 (the unit circle 𝑆1 in the complex plane) and let 𝜑 ∶ 𝐺 → 𝐻 be the homomorphism
𝜑 ∶ 𝑟 ↦ e2𝜋𝑖𝑟. Draw the points on a real line which lie in the kernel of 𝜑. Describe similarly the elements
in the fibers of 𝜑 above the points −1, 𝑖, and e4𝜋𝑖/3 of 𝐻. (Figure 1 of the text for this homomorphism 𝜑 is
usually depicted using the following diagram [please see text for the diagram].)

The points on a real line which lie in the kernel of 𝜑 are ℤ as the integers make e2𝜋𝑖𝑟 equal to 1. The elements
in the fibers of 𝜑 above the points −1, 𝑖, and e4𝜋𝑖/3 are 1 + 4𝑛

2 , 1 + 4𝑛
4 , 2𝑛

3 , for 𝑛 ∈ ℤ, respectively.

13. Repeat the preceding exercise with the map 𝜑 replaced by the map 𝜑 ∶ 𝑟 ↦ e4𝜋𝑖𝑟.

The kernel of𝜑 is againℤ. The elements in the fibers of𝜑 above the points−1, 𝑖, and e4𝜋𝑖/3 are 1 + 4𝑛
4 , 1 + 4𝑛

8 , 𝑛
3 ,

for 𝑛 ∈ ℤ, respectively.



14. Consider the additive quotient group ℚ/ℤ.

(a) Show that every coset of ℤ in ℚ contains exactly one representative 𝑞 ∈ ℚ in the range 0 ≤ 𝑞 < 1.

Proof. Every coset of ℤ in the additive quotient group ℚ/ℤ is of the form 𝑞 + ℤ for 𝑞 ∈ ℚ. Since
representatives of a coset are equal let 𝑡 ∈ ℤ so that the representative of the coset of ℤ in ℚ is 𝑞 + 𝑡.

Then, if 𝑞 is an integer let 𝑡 = −𝑞 so that 𝑞 + 𝑡 = 0. If 𝑞 is not an integer then 𝑞 = 𝑚
𝑛 for relatively prime

integers 𝑚, 𝑛 (i.e., they don’t have any common divisors). Let 𝑚 be the integer that is either negative or
positive (zero was covered in the previous case). Then if 𝑚 < 0 let 𝑡 = ⌈

𝑚
𝑛 ⌉ so that 0 ≤ −𝑚

𝑛 + ⌈
𝑚
𝑛 ⌉ < 1

and if 𝑚 > 0 and 𝑚 > 𝑛 then let 𝑡 = − ⌊𝑚
𝑛 ⌋ so that 0 ≤ 𝑚

𝑛 − ⌊𝑚
𝑛 ⌋ < 1. Lastly, if 𝑚 > 0 and 𝑚 < 𝑛 then

let 𝑡 = 0 so that 0 ≤ 𝑚
𝑛 + 0 < 1.

Therefore, every coset of ℤ in ℚ contains exactly one representative 𝑞 ∈ ℚ in the range 0 ≤ 𝑞 < 1.

(b) Show that every element of ℚ/ℤ has finite order but that there are elements of arbitrarily large order.

Proof. From the proof of part (a) we know that there exists a representative, say 𝑞, of each coset that is
in the range 0 ≤ 𝑞 < 1. Thus, for 𝑞 = 𝑚/𝑛 we see that 𝑛(𝑞) = 𝑛(𝑚/𝑛) = 𝑚 ∈ ℤ. Therefore, the order of
𝑞 + ℤ is finite. Additionally, we can also see from this that there are elements of arbitrarily large order
since this is dependent on 𝑛.

(c) Show that ℚ/ℤ is the torsion subgroup of ℝ/ℤ (cf. Exercise 6, Section 2.1).

Proof. From the proof of part (b) we know that all elements of ℚ/ℤ have finite order. To show that
ℚ/ℤ is the torsion subgroup of ℝ/ℤ we must show that these are the only elements of finite order.

Assume that, the elements of ℝ/ℤ are also of finite order. Thus, for 𝑟 ∈ ℝ and 𝑡 ∈ ℤ we have that
a representative of a coset in ℝ/ℤ is 𝑟 + 𝑡. For this to be of finite order we must have that 𝑛(𝑟 + 𝑡) ∈
ℤ. However, if we choose 𝑟 to be an irrational number then 𝑛(𝑟 + 𝑡) ∉ ℤ, which is a contradiction.
Therefore, the order must be infinite. Thus, ℚ/ℤ is the torsion subgroup of ℝ/ℤ.

(d) Prove that ℚ/ℤ is isomorphic to the multiplicative group of root of unity in ℂ×.

Proof. We will show that the map 𝜑 ∶ ℚ/ℤ → 𝑈 where 𝑈 = {𝑧 ∈ ℂ ∣ 𝑧𝑛 = 1, 𝑛 ∈ ℤ+} and 𝜑(𝑞 + ℤ) =
e2𝜋𝑖𝑞 is an isomorphism.

homomorphism -

𝜑((𝑞1 + ℤ) + (𝑞2 + ℤ)) = 𝜑(𝑞1 + 𝑞2 + ℤ)
= e2𝜋𝑖(𝑞1+𝑞2)

= e2𝜋𝑖𝑞1+2𝜋𝑖𝑞2

= e2𝜋𝑖𝑞1 e2𝜋𝑖𝑞2

= 𝜑(𝑞1 + ℤ)𝜑(𝑞2 + ℤ)

which shows this is a homomorphism as addition is the group operation for ℚ/ℤ while multiplication
is the group operation for the multiplicative group of root of unity in ℂ×.

injective -

𝜑(𝑞1 + ℤ) = 𝜑(𝑞2 + ℤ)
e2𝜋𝑖𝑞1 = e2𝜋𝑖𝑞2



log(e2𝜋𝑖𝑞1) = log(e2𝜋𝑖𝑞2)
2𝜋𝑖𝑞1 = 2𝜋𝑖𝑞2

𝑞1 = 𝑞2

which implies 𝑞1 + ℤ = 𝑞2 + ℤ and therefore 𝜑 is injective.

surjective - From 𝜑 it is easy to see that for some e2𝜋𝑖𝑞 that we have some coset 𝑞 + ℤ and therefore 𝜑 is
surjective.

Therefore, ℚ/ℤ is isomorphic to the multiplicative group of root of unity in ℂ×.

15. Prove that the quotient of a divisible abelian group by any proper subgroup is also divisible. Deduce
that ℚ/ℤ is divisible (cf. Exercise 19, Section 2.4).

Proof. Let (𝐺, +) be a divisible abelian group and 𝑁 a proper subgroup of 𝐺. If 𝐺 is divisible then 𝑛𝑔 = 𝑎 for
𝑔, 𝑎 ∈ 𝐺 and 𝑛 ∈ ℤ+. Since 𝐺 is abelian any subgroup is normal and therefore 𝐺/𝑁 is the quotient group
with elements 𝑔 = 𝑔 + 𝑁. Thus, 𝑛𝑔 = 𝑛(𝑔 + 𝑁) = 𝑛𝑔 + 𝑁 = 𝑎 + 𝑁 [𝑛𝑁 = 𝑁 for any group]. Therefore, 𝐺/𝑁
is divisible showing that every quotient of a divisible group is divisible.

Exercise 19, Section 2.4 showed that the abelian additive group ℚ is divisible and therefore the quotient
ℚ/ℤ must be divisible.

16. Let 𝐺 be a group, let 𝑁 be a normal subgroup of 𝐺 and let 𝐺 = 𝐺/𝑁. Prove that if 𝐺 = ⟨𝑥, 𝑦⟩ then
𝐺 = ⟨𝑥, 𝑦⟩. Prove more generally that if 𝐺 = ⟨𝑆⟩ for any subset 𝑆 of 𝐺, then 𝐺 = ⟨𝑆⟩.

Proof. If 𝐺 = ⟨𝑥, 𝑦⟩ then

𝐺/𝑁 = ⟨𝑥, 𝑦⟩/𝑁
= {𝑥𝛼𝑦𝛽𝑁 ∣ 𝛼, 𝛽 ∈ ℤ}
= {𝑥𝛼𝑁𝑦𝛽𝑁 ∣ 𝛼, 𝛽 ∈ ℤ} [well-defined since 𝑁 is normal]
= {(𝑥𝑁)𝛼(𝑦𝑁)𝛽 ∣ 𝛼, 𝛽 ∈ ℤ}
= ⟨𝑥𝑁, 𝑦𝑁⟩/𝑁
= ⟨𝑥, 𝑦⟩/𝑁

so that 𝐺 = ⟨𝑥, 𝑦⟩.

More generally, if 𝐺 = ⟨𝑆⟩ for any subset S then

𝐺/𝑁 = ⟨𝑆⟩/𝑁
= {𝑠𝜖1

1 𝑠𝜖2
2 ⋯ 𝑠𝜖𝑛𝑛 𝑁 ∣ 𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1}

= {𝑠𝜖1
1 𝑁𝑠𝜖2

2 𝑁 ⋯ 𝑠𝜖𝑛𝑛 𝑁 ∣ 𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1} [well-defined since 𝑁 is normal]
= {(𝑠1𝑁)𝜖1(𝑠2𝑁)𝜖2 ⋯ (𝑠𝑛𝑁)𝜖𝑛 ∣ 𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1}
= ⟨𝑠𝑖𝑁⟩/𝑁
= ⟨𝑆⟩/𝑁

so that 𝐺 = ⟨𝑆⟩.



17. Let 𝐺 be the dihedral group of order 16 (whose lattice appears in Section 2.5):

𝐺 = ⟨𝑟, 𝑠 ∣ 𝑟8 = 𝑠2 = 1, 𝑟𝑠 = 𝑠𝑟−1⟩

and let 𝐺 = 𝐺/⟨𝑟4⟩ be the quotient of 𝐺 by the subgroup generated by 𝑟4 (this subgroup is the center of 𝐺,
hence is normal).

(a) Show that the order of 𝐺 is 8.

Proof. Since the order of 𝐺 is 16 and ⟨𝑟4⟩ = {1, 𝑟4} is of order 2 this means ⟨𝑟4⟩ will partition 𝐺 into 8
disjoint sets so that the order of 𝐺 is 8.

(b) Exhibit each element of 𝐺 in the form 𝜏𝑎𝜎𝑏, for some integers 𝑎 and 𝑏.

Since ⟨𝑟4⟩ = {1, 𝑟4} then 𝐺 = {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3}

(c) Find the order of each of the elements of 𝐺 exhibited in (b).

|1| = 1, |𝑟| = 4, |𝑟2| = 2, |𝑟3| = 4, |𝑠| = 2, |𝑠𝑟| = 4, |𝑠𝑟2| = 2, |𝑠𝑟3| = 4

(d) Write each of the following elements of 𝐺 in the form 𝑠𝑎𝑟𝑏, for some integers 𝑎 and 𝑏 as in (b):

𝑟𝑠, 𝑠𝑟−2𝑠, 𝑠−1𝑟−1𝑠𝑟.

𝑟𝑠 = 𝑠𝑟−1

𝑠𝑟−2𝑠 = 𝑟𝑠𝑟−1𝑠 = 𝑟𝑟𝑠𝑠 = 𝑟2

𝑠−1𝑟−1𝑠𝑟 = 𝑟𝑠𝑠𝑟 = 𝑟2 [since 𝑠 = 𝑠−1]

(e) Prove that 𝐻 = ⟨𝑠, 𝑟2⟩ is a normal subgroup of 𝐺 and 𝐻 is isomorphic to the Klein 4-group. Describe
the isomorphism type of the complete preimage of 𝐻 in 𝐺.

Proof. From Lagrange’s Theorem we know that since 𝐺 is finite that 𝐻 must divide its order, which it
obviously does since ⟨𝑠, 𝑟2⟩ = {1, 𝑠, 𝑟2, 𝑠𝑟2} which is of order 4 and 4 ∣ 8. Furthermore, we know that

𝐻 ≤ N𝐺(𝐻) ≤ 𝐺

and for 𝐻 to be a normal subgroup of 𝐺 we must have that N𝐺(𝐻) = 𝐺. To verify that N𝐺(𝐻) = 𝐺 we
can find an element not in 𝐻 that normalizes 𝐻 which would show that N𝐺(𝐻) must have order 8 by
Lagrange’s Theorem.

𝑟1𝑟−1 = 1 ∈ 𝐻

𝑟𝑠𝑟−1 = 𝑠𝑟−2 = 𝑠𝑟2 ∈ 𝐻

𝑟𝑟2𝑟−1 = 𝑟2 ∈ 𝐻

𝑟𝑠𝑟2𝑟−1 = 𝑠𝑟−2 = 𝑠𝑟2 ∈ 𝐻

Since 𝑟 normalizes 𝐻 and 𝑟 ∉ 𝐻, we see that 𝑟 ∈ N𝐺(𝐻) so therefore the order must be 8 showing us
that 𝐻 ⊴ 𝐺.



From the classification of groups of order 4 we know that this group is either isomorphic to 𝑉4 or 𝑍4.
To show that 𝐻 is isomorphic to 𝑉4 we can show that each element has at most order 2 (i.e., no element
of order 4).

|1| = 1
|𝑠| = 2

|𝑟2| = 2 [since |𝑟| = 4]

|𝑠𝑟2| = 2

Therefore, 𝐻 ≅ 𝑉4. The complete preimage of 𝐻 in 𝐺 is {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3} which is isomorphic to
𝐷8.

(f) Find the center of 𝐺 and describe the isomorphism type of 𝐺/Z𝐺)

Proof. The center of 𝐺 is ⟨𝑟2⟩ = {1, 𝑟2}. The elements of 𝐺/Z𝐺) are {1, 𝑟, 𝑠, 𝑠𝑟} and by the classification
of groups or order 4 we know that this group is isomorphic to 𝑉4 since all non-identity elements have
order 2.

18. Let 𝐺 be the quasidihedral group of order 16 (whose lattice was computed in Exercise 11 of Section 2.5):

𝐺 = ⟨𝜎, 𝜏 ∣ 𝜎8 = 𝜏2 = 1, 𝜎𝜏 = 𝜏𝜎3⟩

and let 𝐺 = 𝐺/⟨𝜎4⟩ be the quotient of 𝐺 by the subgroup generated by 𝜎4 (this subgroup is the center of 𝐺,
hence is normal).

(a) Show that the order of 𝐺 is 8.

Proof. Since the order of 𝐺 is 16 and ⟨𝜎4⟩ = {1, 𝜎4} is of order 2 this means ⟨𝜎4⟩ will partition 𝐺 into 8
disjoint sets so that the order of 𝐺 is 8.

(b) Exhibit each element of 𝐺 in the form 𝜏𝑎𝜎𝑏, for some integers 𝑎 and 𝑏.

Since ⟨𝜎4⟩ = {1, 𝜎4} then 𝐺 = {1, 𝜎, 𝜎2, 𝜎3, 𝜏, 𝜏𝜎, 𝜏𝜎2, 𝜏𝜎3}

(c) Find the order of each of the elements of 𝐺 exhibited in (b).

|1| = 1, |𝜎| = 4, |𝜎2| = 2, |𝜎3| = 4, |𝜏| = 2, |𝜏𝜎| = 4, |𝜏𝜎2| = 2, |𝜏𝜎3| = 4

(d) Write each of the following elements of 𝐺 in the form 𝜏𝑎𝜎𝑏, for some integers 𝑎 and 𝑏 as in (b):

𝜎𝜏, 𝜏𝜎−2𝜏, 𝜏−1𝜎−1𝜏𝜎

𝜎𝜏 = 𝜏𝜎3

𝜏𝜎−2𝜏 = 𝜏𝜎2𝜏 = 𝜏𝜎𝜏𝜎3 = 𝜏𝜏𝜎2 = 𝜎2

𝜏−1𝜎−1𝜏𝜎 = (𝜎𝜏)−1𝜏𝜎 = (𝜏𝜎3)−1𝜏𝜎 = 𝜎−3𝜏−1𝜏𝜎 = 𝜎−2 = 𝜎2

(e) Prove that 𝐺 ≅ 𝐷8.



Proof. Let𝜑 ∶ 𝐺 → 𝐷8 such that𝜑(𝜏𝑎𝜎𝑏) = 𝑠𝑎𝑟𝑏. Thismap is obviously bijective since𝐺 = {1, 𝜎, 𝜎2, 𝜎3, 𝜏, 𝜏𝜎, 𝜏𝜎2, 𝜏𝜎3}
and 𝜑(𝐺) = {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑠𝑟, 𝑠𝑟2, 𝑠𝑟3}.

This is also a homomorphism since in 𝐺 the relation 𝜎𝜏 = 𝜏𝜎3 = 𝜏𝜎−1 and therefore the multiplicative
operation will be preserved between 𝑟𝑠 = 𝑠𝑟−1.

19. Let 𝐺 be the modular group of order 16 (whose lattice was computed in Exercise 14 of Section 2.5):

𝐺 = ⟨𝑢, 𝑣 ∣ 𝑢2 = 𝑣8 = 1, 𝑣𝑢 = 𝑢𝑣5⟩

and let 𝐺 = 𝐺/⟨𝑣4⟩ be the quotient of 𝐺 by the subgroup generated by 𝑣4 (this subgroup is contained in the
center of 𝐺, hence is normal).

(a) Show that the order of 𝐺 is 8.

Proof. Since the order of 𝐺 is 16 and ⟨𝑣4⟩ = {1, 𝑣4} is of order 2 this means ⟨𝑣4⟩ will partition 𝐺 into 8
disjoint sets so that the order of 𝐺 is 8.

(b) Exhibit each element of 𝐺 in the form 𝑢𝑎𝑣𝑏, for some integers 𝑎 and 𝑏.

Since ⟨𝑣4⟩ = {1, 𝑣4} then 𝐺 = {1, 𝑣, 𝑣2, 𝑣3, 𝑢, 𝑢𝑣, 𝑢𝑣2, 𝑢𝑣3}

(c) Find the order of each of the elements of 𝐺 exhibited in (b).

|1| = 1, |𝑣| = 4, |𝑣2| = 2, |𝑣3| = 4, |𝑢| = 2, |𝑢𝑣| = 4, |𝑢𝑣2| = 2, |𝑢𝑣3| = 4

(d) Write each of the following elements of 𝐺 in the form 𝑢𝑎𝑣𝑏, for some integers 𝑎 and 𝑏 as in (b):

𝑣𝑢, 𝑢𝑣−2𝑢, 𝑢−1𝑣−1𝑢𝑣

𝑣𝑢 = 𝑢𝑣

𝑢𝑣−2𝑢 = 𝑢𝑣2𝑢 = 𝑢𝑣𝑢𝑣 = 𝑢𝑢𝑣2 = 𝑣2

𝑢−1𝑣−1𝑢𝑣 = (𝑣𝑢)−1𝑢𝑣 = (𝑢𝑣)−1𝑢𝑣 = 1

(e) Prove that 𝐺 is abelian and is isomorphic to 𝑍2 × 𝑍4.

Proof. We already saw above that 𝑢𝑣 = 𝑣𝑢 and therefore 𝐺 is abelian.

Let 𝜑 ∶ 𝐺 → 𝑍2 × 𝑍4 such that 𝜑(𝑢𝑎𝑣𝑏) = (𝑢𝑎, 𝑣𝑏). Since 𝑢2 = 1 ⟹ ⟨𝑢⟩ and 𝑣4 = 1 ⟹ ⟨𝑣⟩ with orders
2 and 4 respectively. Therefore, since any two cyclic groups of the same order are isomorphic we see
that 𝜑 is an isomorphic map so that 𝐺 ≅ 𝑍2 × 𝑍4.

20. Let 𝐺 = ℤ/24ℤ and let 𝐺 = 𝐺/⟨12⟩, where for each integer 𝑎 we simplify notation by writing ̃𝑎 as ̃𝑎.

(a) Show that 𝐺 = { ̃0, ̃1, … , 1̃1}.

Proof. Since the order of 𝐺 is 24 and ⟨12⟩ = {0, 12} is of order 2 this means ⟨12⟩ will partition 𝐺 into 12
disjoint sets so that the order of 𝐺 is 12. Therefore, 𝐺 = { ̃0, ̃1, … , 1̃1}.

(b) Find the order of each element of 𝐺.

| ̃0| = 1, | ̃1| = 12, |2̃| = 6, |3̃| = 4, | ̃5| = 12, | ̃6| = 2, | ̃7| = 12, | ̃8| = 3, |9̃| = 4, |1̃0| = 6, |1̃1| = 12



(c) Prove that 𝐺 ≅ ℤ/12ℤ. (Thus (ℤ/24ℤ)/(12ℤ/24ℤ) ≅ ℤ/12ℤ, just as if we inverted and canceled the
24ℤs.)

Proof. Let 𝜑 ∶ 𝐺 → ℤ/12ℤ such that 𝜑( ̃𝑎) = 𝑎. Obviously this is a bijective map and it is also a ho-
momorphism as both 𝐺 and ℤ/12ℤ are both modulo 12 so that the group operation holds in both.
Therefore, 𝐺 ≅ ℤ/12ℤ.

21. Let 𝐺 = 𝑍4 × 𝑍4 be given in terms of the following generators and relations:

𝐺 = ⟨𝑥, 𝑦 ∣ 𝑥4 = 𝑦4 = 1, 𝑥𝑦 = 𝑦𝑥⟩

Let 𝐺 = 𝐺/⟨𝑥2𝑦2⟩ (note that every subgroup of the abelian group 𝐺 is normal).

(a) Show that the order of 𝐺 is 8.

Proof. Since the order of 𝐺 is 16 and ⟨𝑥2𝑦2⟩ = {1, 𝑥2𝑦2} is of order 2 this means ⟨𝑥2𝑦2⟩ will partition 𝐺
into 8 disjoint sets so that the order of 𝐺 is 8.

(b) Exhibit each element of 𝐺 in the form 𝑥𝑎𝑦𝑏, for some integers 𝑎 and 𝑏.

Since ⟨𝑥2𝑦2⟩ = {1, 𝑥2𝑦2} then 𝐺 = {1, 𝑥, 𝑥2 = 𝑦2, 𝑥3, 𝑦, 𝑦3, 𝑥𝑦, 𝑥3𝑦 = 𝑥𝑦3}

(c) Find the order of each of the elements of 𝐺 exhibited in (b).

|1| = 1, |𝑥| = 4, |𝑥2 = 𝑦2| = 2, |𝑥3| = 4, |𝑦| = 4, |𝑦3| = 4, |𝑥𝑦| = 2, |𝑥3𝑦 = 𝑥𝑦3| = 2

(d) Prove that 𝐺 ≅ 𝑍4 × 𝑍2.

Proof. Let 𝜑 ∶ 𝐺 → 𝑍4 × 𝑍2 such that 𝜑(𝑥𝑎𝑦𝑏) = 𝜑(𝑥𝑎−𝑏(𝑥𝑦)𝑏) = (𝑥𝑎−𝑏, (𝑥𝑦)𝑏). Note that 𝑥𝑦 has order 2
and therefore 𝜑 will map this information over into 𝑍2. A similar argument follows for 𝑥𝑎−𝑏 and 𝑍4.

Now, let’s show that this map is actually an isomorphism.

injective -

𝜑(𝑥𝑎𝑦𝑏) = 𝜑(𝑥𝑐𝑦𝑑)

𝜑(𝑥𝑎−𝑏(𝑥𝑦)𝑏) = 𝜑(𝑥𝑐−𝑑(𝑥𝑦)𝑑)
(𝑥𝑎−𝑏, (𝑥𝑦)𝑏) = (𝑥𝑐−𝑑, (𝑥𝑦)𝑑)

⟹ 𝑎 − 𝑏 = 𝑐 − 𝑑, 𝑏 = 𝑑
⟹ 𝑎 = 𝑐, 𝑏 = 𝑑

which shows that it is 1-1.

surjective -
𝜑(𝑥𝑎𝑦𝑏) = 𝜑(𝑥𝑎−𝑏(𝑥𝑦)𝑏) = (𝑥𝑎−𝑏, (𝑥𝑦)𝑏)

which shows that it is onto.

homomorphism -

𝜑(𝑥𝑎𝑦𝑏𝑥𝑐𝑦𝑑) = 𝜑(𝑥𝑎+𝑐𝑦𝑏+𝑑)

= 𝜑(𝑥(𝑎+𝑐)−(𝑏+𝑑)(𝑥𝑦)𝑏+𝑑)



= (𝑥(𝑎+𝑐)−(𝑏+𝑑), (𝑥𝑦)𝑏+𝑑)
= (𝑥𝑎−𝑏𝑥𝑐−𝑑, (𝑥𝑦)𝑏(𝑥𝑦)𝑑)
= (𝑥𝑎−𝑏, (𝑥𝑦)𝑏)(𝑥𝑐−𝑑, (𝑥𝑦)𝑑)

= 𝜑(𝑥𝑎−𝑏(𝑥𝑦)𝑏)𝜑(𝑥𝑐−𝑑(𝑥𝑦)𝑑)

= 𝜑(𝑥𝑎𝑦𝑏)𝜑(𝑥𝑐𝑦𝑑)

showing that 𝜑 is a homomorphism.

Therefore, 𝐺 ≅ 𝑍4 × 𝑍2.

22.

(a) Prove that if 𝐻 and 𝐾 are normal subgroups of a group 𝐺 then their intersection 𝐻 ∩ 𝐾 is also a normal
subgroup of 𝐺.

Proof. If 𝐻 ⊴ 𝐺 and 𝐾 ⊴ 𝐺 then 𝑔𝐻𝑔−1 = 𝐻 and 𝑔𝐾𝑔−1 = 𝐾 for all 𝑔 ∈ 𝐺. Therefore, for all 𝑥 ∈ 𝐻 there
exists 𝑦 ∈ 𝐻 such that 𝑔𝑥𝑔−1 = 𝑦 and similarly the same argument holds for 𝐾. Thus, for all 𝑥 ∈ 𝐻 ∩ 𝐾
there exists 𝑦 ∈ 𝐻 ∩ 𝐾 such that 𝑔𝑥𝑔−1 = 𝑦 for all 𝑔 ∈ 𝐺. Therefore, 𝑔(𝐻 ∩ 𝐾)𝑔−1 = 𝐻 ∩ 𝐾 for all 𝑔 ∈ 𝐺
so that 𝐻 ∩ 𝐾 ⊴ 𝐺.

(b) Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a
normal subgroup (do not assume the collection is countable).

Proof. If we have an arbitrary nonempty collection of normal subgroups of a group then with the same
argument used in the proof of part (a) we see that their intersection is also a normal subgroup.

23. Prove that the join (cf. Section 2.5) of any nonempty collection of normal subgroups of a group is a
normal subgroup.

Proof. Let {𝐻𝑖 ∣ 𝑖 ∈ 𝐼} be a collection of normal subgroups of 𝐺 and 𝐽 = ⟨⋃𝑖∈𝐼 𝐻𝑖⟩. We need to show that 𝐽 is
a normal subgroup of 𝐺.

An element of 𝐽 will be of the form ℎ𝜖1
1 ℎ𝜖2

2 ⋯ ℎ𝜖𝑛𝑛 with 𝜖𝑘 = ±1 and ℎ𝑗 ∈ 𝐻𝑖 for some 𝑖 ∈ 𝐼 for all 1 ≤ 𝑗 ≤ 𝑛.
Then, 𝑔(ℎ𝜖1

1 ℎ𝜖2
2 ⋯ ℎ𝜖𝑛𝑛 )𝑔−1 = (𝑔ℎ𝜖1

1 𝑔−1)(𝑔ℎ𝜖2
2 𝑔−1) ⋯ (𝑔ℎ𝜖𝑛𝑛 𝑔−1) for all 𝑔 ∈ 𝐺 and since each (𝑔ℎ𝜖𝑘

𝑗 𝑔−1) ∈ 𝐻𝑖 for
some 𝑖 ∈ 𝐼 we see that 𝑔(ℎ𝜖1

1 ℎ𝜖2
2 ⋯ ℎ𝜖𝑛𝑛 )𝑔−1 ∈ 𝐽. Thus, 𝐽 ⊴ 𝐺.

24. Prove that if 𝑁 ⊴ 𝐺 and 𝐻 is any subgroup of 𝐺 then 𝑁 ∩ 𝐻 ⊴ 𝐻.

Proof. Since 𝐻 is a group we obviously have that ℎ𝐻ℎ−1 = 𝐻 and since 𝑁 ⊴ 𝐺 and 𝐻 ≤ 𝐺 we also have that
ℎ𝑁ℎ−1 = 𝑁. Therefore, we must have that ℎ(𝑁 ∩ 𝐻)ℎ−1 = 𝑁 ∩ 𝐻 which implies that 𝑁 ∩ 𝐻 ⊴ 𝐻.

25.

(a) Prove that a subgroup 𝑁 of 𝐺 is normal if and only if 𝑔𝑁𝑔−1 ⊆ 𝑁 for all 𝑔 ∈ 𝐺.

Proof. If 𝑁 ⊴ 𝐺 then by definition 𝑔𝑁𝑔−1 = 𝑁 for all 𝑔 ∈ 𝐺 and therefore we obviously have that
𝑔𝑁𝑔−1 ⊆ 𝑁. Conversely, if 𝑔𝑁𝑔−1 ⊆ 𝑁 for all 𝑔 ∈ 𝐺 then

𝑔𝑁𝑔−1 ⊆ 𝑁
𝑔−1𝑔𝑁𝑔−1𝑔 ⊆ 𝑔−1𝑁𝑔

𝑁 ⊆ 𝑔−1𝑁𝑔



but since this was for all 𝑔 ∈ 𝐺 this is also true if we set 𝑔 = 𝑥−1, 𝑥 ∈ 𝐺 since 𝑔 will be the inverse of
some other element in the group. Then

𝑁 ⊆ 𝑔−1𝑁𝑔
𝑁 ⊆ (𝑥−1)−1𝑁𝑥−1

𝑁 ⊆ 𝑥𝑁𝑥−1

and therefore, 𝑔𝑁𝑔−1 = 𝑁 which shows that 𝑁 ⊴ 𝐺.

(b) Let 𝐺 = 𝐺𝐿2(ℚ), let 𝑁 be the subgroup of upper triangular matrices with integer entries and 1’s on
the diagonal, and let 𝑔 be the diagonal matrix with entries 2,1. Show that 𝑔𝑁𝑔−1 ⊆ 𝑁 but 𝑔 does not
normalize 𝑁.

Proof.

𝑁 = {(1 𝑎
0 1) ∣ 𝑎 ∈ ℤ}, 𝑔 = (2 0

0 1) ⟹ 𝑔−1 = 1
2 (1 0

0 2) = (
1
2 0
0 1) so that we have

𝑔𝑁𝑔−1 = (2 0
0 1) (1 𝑎

0 1) (
1
2 0
0 1)

= (2 0
0 1) (

1
2 𝑎
0 1)

= (1 2𝑎
0 1 ) ∈ 𝑁 ⟹

𝑔𝑁𝑔−1 ⊆ 𝑁

This shows that 𝑔 does not normalize 𝑁 because (1 2𝑎
0 1 ) ≠ (1 𝑎

0 1).

26. Let 𝑎, 𝑏 ∈ 𝐺.

(a) Prove that the conjugate of the product of 𝑎 and 𝑏 is the product of the conjugate of 𝑎 and the conjugate
of 𝑏. Prove that the order of 𝑎 and the order of any conjugate of 𝑎 are the same.

Proof. The conjugate of the product of 𝑎 and 𝑏 is

𝑔(𝑎𝑏)𝑔−1 = 𝑔𝑎(𝑔−1𝑔)𝑏𝑔−1 = (𝑔𝑎𝑔−1)(𝑔𝑏𝑔−1)

which is the product of the conjugate of 𝑎 and the conjugate of 𝑏.

Suppose the order of 𝑎 is 𝑛. Then 𝑎𝑛 = 1 and

1 = 𝑔𝑔−1

= 𝑔𝑎𝑛𝑔−1

= (𝑔𝑎𝑔−1)1(𝑔𝑎𝑔−1)2 ⋯ (𝑔𝑎𝑔−1)𝑛
= (𝑔𝑎𝑔−1)𝑛

showing that the order of 𝑎 and any conjugate of 𝑎 are the same.

(b) Prove that the conjugate of 𝑎−1 is the inverse of the conjugate of 𝑎.

Proof. 𝑔𝑎−1𝑔−1 = (𝑔−1)−1𝑎−1𝑔−1 = (𝑔𝑎𝑔−1)−1



(c) Let 𝑁 = ⟨𝑆⟩ for some subset 𝑆 of 𝐺. Prove that 𝑁 ⊴ 𝐺 if 𝑔𝑆𝑔−1 ⊆ 𝑁 for all 𝑔 ∈ 𝐺.

Proof. If 𝑔𝑆𝑔−1 ⊆ 𝑁 then for all 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆 we have that 𝑔𝑠𝑔−1 ∈ 𝑁. Since 𝑁 is a group we also have
that (𝑔𝑠𝑔−1)(𝑔𝑠−1𝑔−1) = 1 ∈ 𝑁 ⟹ (𝑔𝑠−1𝑔−1) ∈ 𝑁 for all 𝑠 ∈ 𝑆. Then, since 𝑁 = ⟨𝑆⟩ we see that
𝑛 ∈ 𝑁 ⟹ 𝑛 = 𝑠𝜖1

1 ⋯ 𝑠𝜖𝑛𝑛 for 𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1.

Therefore, 𝑔𝑛𝑔−1 = 𝑔𝑠𝜖1
1 ⋯ 𝑠𝜖𝑛𝑛 𝑔−1 = (𝑔𝑠𝜖1

1 𝑔−1) ⋯ (𝑔𝑠𝜖𝑛𝑛 𝑔−1) ∈ 𝑁 which shows that 𝑔𝑁𝑔−1 ⊆ 𝑁 so that
𝑁 ⊴ 𝐺.

(d) Deduce that if 𝑁 is the cyclic group ⟨𝑥⟩, then 𝑁 is normal in 𝐺 if and only if for each 𝑔 ∈ 𝐺, 𝑔𝑥𝑔−1 = 𝑥𝑘

for some 𝑘 ∈ ℤ.

Proof. 𝑁 is the cyclic group ⟨𝑥⟩.

If 𝑁 ⊴ 𝐺 then for all 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑁 we have that 𝑔𝑥𝑔−1 ∈ 𝑁 ⟹ 𝑔𝑥𝑔−1 = 𝑥𝑘 for some 𝑘 ∈ ℤ.

Conversely, if 𝑔𝑥𝑔−1 = 𝑥𝑘 for some 𝑘 ∈ ℤ, then 𝑔𝑥𝑔−1 ∈ 𝑁 for all 𝑥 ∈ 𝑁, 𝑔 ∈ 𝐺 ⟹ 𝑁 ⊴ 𝐺.

Therefore, 𝑁 is normal in 𝐺 if and only if for each 𝑔 ∈ 𝐺, 𝑔𝑥𝑔−1 = 𝑥𝑘 for some 𝑘 ∈ ℤ.

(e) Let 𝑛 be a positive integer. Prove that the subgroup 𝑁 of 𝐺 generated by all the elements of 𝐺 of order
𝑛 is a normal subgroup of 𝐺.

Proof. Let 𝑁 = {𝑥 ∈ 𝐺 ∣ 𝑥𝑛 = 1} and therefore for all 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑁 we have that

1 = 𝑔𝑔−1

= 𝑔𝑥𝑛𝑔−1

= (𝑔𝑥𝑔−1)1(𝑔𝑥𝑔−1)2 ⋯ (𝑔𝑥𝑔−1)𝑛
= (𝑔𝑥𝑔−1)𝑛

showing that 𝑔𝑥𝑔−1 ∈ 𝑁 ⟹ 𝑁 ⊴ 𝐺.

27. Let 𝑁 be a finite subgroup of a group 𝐺. Show that 𝑔𝑁𝑔−1 ⊆ 𝑁 if and only if 𝑔𝑁𝑔−1 = 𝑁. Deduce that
N𝐺(𝑁) = {𝑔 ∈ 𝐺 ∣ 𝑔𝑁𝑔−1 ⊆ 𝑁}.

Proof. From the proof of Exercise 25 we saw that a subgroup 𝑁 of 𝐺 is normal if and only if 𝑔𝑁𝑔−1 ⊆ 𝑁 for
all 𝑔 ∈ 𝐺, and therefore 𝑔𝑁𝑔−1 = 𝑁 if and only if 𝑔𝑁𝑔−1 ⊆ 𝑁 for all 𝑔 ∈ 𝐺. However, because finite was
emphasized we will also show a proof that uses the size of 𝑁 to verify the hypothesis.

Obviously, if 𝑔𝑁𝑔−1 = 𝑁 then 𝑔𝑁𝑔−1 ⊆ 𝑁. Conversely, if 𝑔𝑁𝑔−1 ⊆ 𝑁 then let 𝜑(𝑥) = 𝑔𝑥𝑔−1 for 𝑥 ∈ 𝑁, 𝑔 ∈ 𝐺.
Then, we see that 𝜑 maps 𝑁 into 𝑁. Therefore

𝜑(𝑥1) = 𝜑(𝑥2)
𝑔𝑥1𝑔−1 = 𝑔𝑥2𝑔−1

⟹ 𝑥1 = 𝑥2

This shows that 𝜑 is injective and therefore the image has the same amount of elements as the domain, i.e.,
|𝑁| = |𝑔𝑁𝑔−1|. Since we assumed that 𝑔𝑁𝑔−1 ⊆ 𝑁, then if 𝑔𝑁𝑔−1 has the same amount of elements as 𝑁
then they must be equal. Therefore, 𝑔𝑁𝑔−1 = 𝑁.

Additionally, since the definition of the normalizer of 𝐴 in 𝐺 is the set N𝐺(𝐴) = {𝑔 ∈ 𝐺 ∣ 𝑔𝐴𝑔−1 = 𝐴} [section
2.2] and we see that 𝑔𝑁𝑔−1 ⊆ 𝑁 if and only if 𝑔𝑁𝑔−1 = 𝑁 then we can substitute this in the definition to
deduce that

N𝐺(𝑁) = {𝑔 ∈ 𝐺 ∣ 𝑔𝑁𝑔−1 ⊆ 𝑁}



28. Let 𝑁 be a finite subgroup of a group 𝐺 and assume 𝑁 = ⟨𝑆⟩ for some subset 𝑆 of 𝐺. Prove that an
element 𝑔 ∈ 𝐺 normalizes 𝑁 if and only if 𝑔𝑆𝑔−1 ⊆ 𝑁.

Proof. If an element 𝑔 ∈ 𝐺 normalizes 𝑁 then by definition we have

𝑔𝑁𝑔−1 = 𝑁
⟹ 𝑔𝑁𝑔−1 ⊆ 𝑁
⟹ 𝑔(𝑠𝜖1

1 𝑠𝜖2
2 ⋯ 𝑠𝜖𝑛𝑛 )𝑔−1 ∈ 𝑁 [𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1]

⟹ (𝑔𝑠𝜖1
1 𝑔−1)(𝑔𝑠𝜖2

2 𝑔−1) ⋯ (𝑔𝑠𝜖𝑛𝑛 𝑔−1) ∈ 𝑁 [𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1]
⟹ 𝑔𝑠𝑔−1 ∈ 𝑁 [𝑠 ∈ 𝑆]
⟹ 𝑔𝑆𝑔−1 ⊆ 𝑁

Conversely, if 𝑔𝑆𝑔−1 ⊆ 𝑁 for some 𝑔 ∈ 𝐺 then we have that

𝑔𝑠𝑔−1 ∈ 𝑁 [𝑠 ∈ 𝑆]
⟹ (𝑔𝑠𝜖1

1 𝑔−1)(𝑔𝑠𝜖2
2 𝑔−1) ⋯ (𝑔𝑠𝜖𝑛𝑛 𝑔−1) ∈ 𝑁 [𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1]

⟹ 𝑔(𝑠𝜖1
1 𝑠𝜖2

2 ⋯ 𝑠𝜖𝑛𝑛 )𝑔−1 ∈ 𝑁 [𝑠𝑖 ∈ 𝑆, 𝜖𝑖 = ±1]
⟹ 𝑔𝑁𝑔−1 ⊆ 𝑁
⟹ 𝑔𝑁𝑔−1 = 𝑁 [proof of Exercise 27]

Therefore, an element 𝑔 ∈ 𝐺 normalizes 𝑁 if and only if 𝑔𝑆𝑔−1 ⊆ 𝑁.

29. Let 𝑁 be a finite subgroup of a group 𝐺 and suppose 𝐺 = ⟨𝑇⟩ and 𝑁 = ⟨𝑆⟩ for some subset 𝑆 and 𝑇 of 𝐺.
Prove that 𝑁 is normal in 𝐺 if and only if 𝑡𝑆𝑡−1 ⊆ 𝑁 for all 𝑡 ∈ 𝑇.

Proof. If 𝑁 ⊴ 𝐺 then from the proof of Exercise 28, since this exercise also had 𝑁 = ⟨𝑆⟩ for a subset 𝑆 of 𝐺,
we know that 𝑔𝑆𝑔−1 ⊆ 𝑁. Then, since 𝑔 ∈ 𝐺 ⟹ 𝑔 ∈ ⟨𝑇⟩ ⟹ there exists 𝑔 ∈ 𝑇 so that

𝑔𝑆𝑔−1 ⊆ 𝑁 ⟹ 𝑡𝑆𝑡−1 ⊆ 𝑁 for all 𝑡 ∈ 𝑇

Conversely, if 𝑡𝑆𝑡−1 ⊆ 𝑁 for all 𝑡 ∈ 𝑇 then

𝑡𝑆𝑡−1 ⊆ 𝑁
⟹ 𝑡𝑠𝑡−1 ∈ 𝑁 [𝑠 ∈ 𝑆]

Therefore, 𝑁 is normal in 𝐺 if and only if 𝑡𝑆𝑡−1 ⊆ 𝑁 for all 𝑡 ∈ 𝑇.

30. Let 𝑁 ≤ 𝐺 and 𝑔 ∈ 𝐺. Prove that 𝑔𝑁 = 𝑁𝑔 if and only if 𝑔 ∈ N𝐺(𝑁).

Proof. If 𝑔𝑁 = 𝑁𝑔 then 𝑔𝑁𝑔−1 = 𝑁 and therefore 𝑔 normalizes 𝑁 so that 𝑔 ∈ N𝐺(𝑁). Conversely, if
𝑔 ∈ N𝐺(𝑁) then 𝑔 normalizes 𝑁 so that we have 𝑔𝑁𝑔−1 = 𝑁 and therefore 𝑔𝑁 = 𝑁𝑔.

Therefore, 𝑔𝑁 = 𝑁𝑔 if and only if 𝑔 ∈ N𝐺(𝑁).

31. Prove that if 𝐻 ≤ 𝐺 and 𝑁 is a normal subgroup of 𝐻 then 𝐻 ≤ N𝐺(𝑁). Deduce that N𝐺(𝑁) is the
largest subgroup of 𝐺 in which 𝑁 is normal (i.e., is the join of all subgroups 𝐻 for which 𝑁 ⊴ 𝐻).

Proof. 𝑁 ⊴ 𝐻 ⟹ ℎ𝑁ℎ−1 = 𝑁 for all ℎ ∈ 𝐻. Thus, ℎ ∈ N𝐺(𝑁) therefore 𝐻 ≤ N𝐺(𝑁).



Since 𝑁 ⊴ 𝐻 ≤ N𝐺(𝑁) ≤ 𝐺 we deduce that the largest subgroup 𝐻 of 𝐺 where 𝑁 is normal is N𝐺(𝑁).

32. Prove that every subgroup of 𝑄8 is normal. For each subgroup find the isomorphism type of its corre-
sponding quotient. [You may use the lattice subgroups for 𝑄8 in Section 2.5.]

Proof. The non-trivial subgroups of 𝑄8 are ⟨−1⟩, ⟨𝑖⟩, ⟨𝑗⟩, ⟨𝑘⟩. ⟨−1⟩ commutes with all elements of 𝑄8 so it is
obviously normal. For the others

𝑗𝑖(−𝑗) = −𝑖 ∈ ⟨𝑖⟩
𝑘𝑖(−𝑘) = −𝑖 ∈ ⟨𝑖⟩
𝑖𝑗(−𝑖) = −𝑗 ∈ ⟨𝑗⟩

𝑘𝑗(−𝑘) = −𝑗 ∈ ⟨𝑗⟩
𝑖𝑘(−𝑖) = −𝑘 ∈ ⟨𝑘⟩
𝑗𝑘(−𝑗) = −𝑘 ∈ ⟨𝑘⟩

showing that ⟨𝑖⟩, ⟨𝑗⟩, ⟨𝑘⟩, ⟨−1⟩ are normal subgroups.

Therefore, all the subgroups of 𝑄8 are normal.

𝑄8/1 ≅ 𝑄8 and 𝑄8/𝑄8 ≅ 1

𝑄8/⟨−1⟩ = {1, 𝑖, 𝑗, 𝑘} where each element has order two (remember that the identity element of this quotient
group is the kernel). From the classification of groups of order 4 we know that this group is either isomor-
phic to 𝑉4 or 𝑍4 and since every non-identity element has order 2, we know it must be isomorphic to 𝑉4.
Therefore, 𝑄8/⟨−1⟩ ≅ 𝑉4.

𝑄8/⟨𝑖⟩ = {1, 𝑗} and therefore, since this is a group of order 2 it must be isomorphic to 𝑍2 since all groups have
the identity element and the other element multiplied by itself must be closed under the group operation,
i.e., ⟨𝑗⟩ = 𝑄8/⟨𝑖⟩ ≅ 𝑍2. A similar argument holds for 𝑄8/⟨𝑗⟩ and 𝑄8/⟨𝑘⟩.

33. Find all normal subgroups of 𝐷8 and for each of these find the isomorphism type of its corresponding
quotient. [You may use the lattice of subgroups for 𝐷8 in Section 2.5.]

The non-trivial subgroups of 𝐷8 are ⟨𝑠, 𝑟2⟩, ⟨𝑟⟩, ⟨𝑟𝑠, 𝑟2⟩, ⟨𝑠⟩, ⟨𝑟2𝑠⟩, ⟨𝑟2⟩, ⟨𝑟𝑠⟩, ⟨𝑟3𝑠⟩.

⟨𝑠⟩ and ⟨𝑟⟩ cannot be normal as they do not commute with one another.

Nor are the subgroups ⟨𝑟𝑠⟩ → 𝑠(𝑟𝑠)𝑠−1 = 𝑠𝑟 ∉ ⟨𝑟𝑠⟩, ⟨𝑟2𝑠⟩ → 𝑠(𝑟2𝑠)𝑠−1 = 𝑠𝑟2 ∉ ⟨𝑟2𝑠⟩, ⟨𝑟3𝑠⟩ → 𝑠(𝑟3𝑠)𝑠−1 = 𝑠𝑟3 ∉
⟨𝑟3𝑠⟩.

The center of 𝐷8, ⟨𝑟2⟩ is obviously normal and the quotient of this is isomorphic to 𝑉4.

Additionally, the subgroups of order 4 are all normal, ⟨𝑠, 𝑟2⟩, ⟨𝑟⟩, ⟨𝑠𝑟, 𝑟2⟩, and the quotient of these are all
isomorphic to 𝑍2.

34. Let 𝐷2𝑛 = ⟨𝑟, 𝑠 ∣ 𝑟𝑛 = 𝑠2 = 1, 𝑟𝑠 = 𝑠𝑟−1⟩ be the usual presentation of the dihedral group of order 2𝑛 and
let 𝑘 be a positive integer dividing 𝑛.

(a) Prove that ⟨𝑟𝑘⟩ is a normal subgroup of 𝐷2𝑛.

Proof. From Exercise 33 we know that ⟨𝑟⟩ is a cyclic normal subgroup of 𝐷2𝑛 with order 𝑛. Since 𝑘 ∣ 𝑛
we know that by Lagrange’s Theorem that ⟨𝑟𝑘⟩ is a subgroup of ⟨𝑟⟩. Additionally, we know that since

⟨𝑟𝑘⟩ ≤ ⟨𝑟⟩ ⊴ 𝐷2𝑛 ⟹ N𝐷2𝑛
(⟨𝑟⟩) = 𝐷2𝑛



and therefore, since all of 𝐷2𝑛 normalizes ⟨𝑟⟩ it must also normalize the elements of ⟨𝑟𝑘⟩.

Thus, ⟨𝑟𝑘⟩ ⊴ 𝐷2𝑛.

(b) Prove that 𝐷2𝑛/⟨𝑟𝑘⟩ ≅ 𝐷2𝑘.

Proof. Since ⟨𝑟𝑘⟩ is a normal subgroup and 𝑘 ∣ 𝑛 let 𝑑 = 𝑛/𝑘 so that ⟨𝑟𝑘⟩ has order 𝑑 and therefore by La-
grange’s Theorem |𝐷2𝑛/⟨𝑟𝑘⟩| = 2𝑘, i.e., therewill be 2𝑘 cosets. The cosetswill be {1, 𝑟, 𝑟2, … , 𝑟𝑘−1, 𝑠, 𝑠𝑟, … , 𝑠𝑟𝑘−1}
and therefore 𝐷2𝑛/⟨𝑟𝑘⟩ ≅ 𝐷2𝑘.

35. Prove that 𝑆𝐿𝑛(𝐹) ⊴ 𝐺𝐿𝑛(𝐹) and describe the isomorphism type of the quotient group (cf. Exercise 9,
Section 2.1).

Proof. For determinants we have the property that

det(𝐴𝐵𝐶) = det(𝐴)det(𝐵)det(𝐶) and det(𝐴−1) = 1
det(𝐴)

and therefore we see that for any 𝑔 ∈ 𝐺𝐿𝑛(𝐹) and 𝑠 ∈ 𝑆𝐿𝑛(𝐹) that

det(𝑔𝑠𝑔−1) = det(𝑔)det(𝑠)det(𝑔−1) = det(𝑔) ⋅ 1 ⋅ det(𝑔−1) = det(𝑔) 1
det(𝑔) = 1

so that resulting matrix has determinant 1 and thus is in 𝑆𝐿𝑛(𝐹). Therefore, 𝑆𝐿𝑛(𝐹) ⊴ 𝐺𝐿𝑛(𝐹).

The isomorphism type of the quotient group can be seen from the looking at the map det(𝐺𝐿𝑛(𝐹)) ↦ 𝐹×.
This is a group homomorphism from the argument of the proof above since the determinant of a product is
the product of the determinants. Additionally, the kernel of this homomorphism is 𝑆𝐿𝑛(𝐹) as the identity
element in 𝐹× is 1. Then, as we saw in the text, since the multiplication of fibers is defined from the mul-
tiplication in 𝐹×, by construction the quotient group with this multiplication is naturally isomorphic to the
image of 𝐺𝐿𝑛(𝐹) under this homomorphism. Therefore, 𝐺𝐿𝑛(𝐹)/𝑆𝐿𝑛(𝐹) ≅ 𝐹×.

36. Prove that if 𝐺/Z(𝐺) is cyclic then 𝐺 is abelian. [If 𝐺/Z(𝐺) is cyclic with generator 𝑥Z(𝐺), show that
every element of 𝐺 can be written in the form 𝑥𝑎𝑧 for some integer 𝑎 ∈ ℤ and some element 𝑧 ∈ Z(𝐺).]

Proof. If 𝐺/Z(𝐺) is cyclic with generator 𝑥Z(𝐺) the elements of 𝐺/Z(𝐺) are (𝑥Z(𝐺))𝑎 = 𝑥𝑎 Z(𝐺) ⟹
{𝑥𝑎 Z(𝐺) ∣ 𝑎 ∈ ℤ}. Since this quotient will partition all of 𝐺 we see that each element of 𝐺 must be of the
form 𝑥𝑎𝑧 for some 𝑧 ∈ Z(𝐺). Since the elements of Z(𝐺) commute will all elements of 𝐺 we see that 𝐺 must
be abelian.

37. Let 𝐴 and 𝐵 be groups. Show that {(𝑎, 1) ∣ 𝑎 ∈ 𝐴} is a normal subgroup of 𝐴 × 𝐵 and the quotient of 𝐴 × 𝐵
by this subgroup is isomorphic to 𝐵.

Proof. Let 𝐺 = 𝐴 × 𝐵 and 𝑁 = {(𝑎, 1) ∣ 𝑎 ∈ 𝐴}.

For all (𝑎, 𝑏) ∈ 𝐺 and (𝑎, 1) ∈ 𝑁

(𝑎, 𝑏)(𝑎, 1)(𝑎, 𝑏)−1 = (𝑎, 𝑏)(𝑎, 1)(𝑎−1, 𝑏−1)
= (𝑎, 𝑏)(1, 𝑏−1)
= (𝑎, 1) ∈ 𝑁

which shows that all (𝑎, 𝑏) normalizes all (𝑎, 1) therefore 𝑁 ⊴ 𝐺.



𝐺/𝑁 has elements
(𝑎, 𝑏) = (𝑎, 𝑏)𝑁

However, (𝑎, 𝑏) = (1, 𝑏) since (𝑎, 𝑏) ∈ (1, 𝑏)𝑁. Therefore, every coset uniquely corresponds to an element of
𝐵 via the map

(𝑎, 𝑏) ⟷ 𝑏
and since the multiplication is the same in 𝐵, we see that 𝐺/𝑁 ≅ 𝐵.

38. Let 𝐴 be an abelian group and let 𝐷 be the (diagonal) subgroup {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴} of 𝐴 × 𝐴. Prove that 𝐷 is
a normal subgroup of 𝐴 × 𝐴 and (𝐴 × 𝐴)/𝐷 ≅ 𝐴.

Proof. Since 𝐴 is an abelian group so too is 𝐴 × 𝐴 and every subgroup of an abelian group is normal because
for all 𝑎 ∈ 𝐴 and 𝑛 ∈ 𝑁 ≤ 𝐴 we see that

𝑎𝑛𝑎−1 = 𝑎𝑎−1𝑛 = 𝑛 ∈ 𝑁

Therefore, since 𝐷 is a subgroup of 𝐴 × 𝐴 it must be a normal subgroup of 𝐴 × 𝐴.

The quotient group (𝐴 × 𝐴)/𝐷 has elements of the from

(𝑎1, 𝑎2)𝐷

and since representatives are equal we can see that for (𝑎−1
2 , 𝑎−1

2 ) ∈ 𝐷

(𝑎1, 𝑎2)𝐷 = (𝑎1, 𝑎2)(𝑎−1
2 , 𝑎−1

2 )𝐷 = (𝑎3, 1)𝐷

for some 𝑎3 ∈ 𝐴. This representation is unique as it relies on the inverse of 𝑎2, which is unique. This shows
that each coset corresponds uniquely to an element of 𝐴.

Let 𝜑 ∶ (𝐴 × 𝐴)/𝐷 → 𝐴 such that (𝑎, 1)𝐷 𝜑−→ 𝑧. This is well-defined, since the representation is unique, and it
is obviously a bijection. Now we need to check that it is a homomorphism.

𝜑((𝑎1, 1)(𝑎2, 1)) = 𝜑((𝑎1𝑎2, 1))
= 𝑎1𝑎2
= 𝜑((𝑎1, 1))𝜑((𝑎2, 1))

Therefore, 𝜑 is an isomorphism and therefore (𝐴 × 𝐴)/𝐷 ≅ 𝐴.

39. Suppose 𝐴 is the non-abelian group 𝑆3 and 𝐷 is the diagonal subgroup {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴} of 𝐴 × 𝐴. Prove
that 𝐷 is not normal in 𝐴 × 𝐴.

Proof. Let (𝑎, 𝑎) ∈ 𝐷 and (𝑎1, 𝑎2) ∈ 𝐴 × 𝐴. Then

(𝑎1, 𝑎2)(𝑎, 𝑎)(𝑎1, 𝑎2)−1 = (𝑎1, 𝑎2)(𝑎, 𝑎)(𝑎−1
1 , 𝑎−1

2 )
= (𝑎1𝑎𝑎−1

1 , 𝑎2𝑎𝑎−1
2 ) ∉ 𝐷

Therefore, 𝐷 is not normal in 𝐴 × 𝐴.

40. Let 𝐺 be a group, let 𝑁 be a normal subgroup of 𝐺 and let 𝐺 = 𝐺/𝑁. Prove that 𝑥 and 𝑦 commute in 𝐺
if and only if 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁. (The element 𝑥−1𝑦−1𝑥𝑦 is called the commutator of 𝑥 and 𝑦 and is denoted by
[𝑥, 𝑦].)



Proof. If 𝑥 and 𝑦 commute in 𝐺 then

𝑥𝑦 = 𝑦𝑥
𝑥𝑁𝑦𝑁 = 𝑦𝑁𝑥𝑁

𝑥𝑦𝑁 = 𝑦𝑥𝑁 [𝑁 normal]
(𝑦𝑥)−1𝑥𝑦𝑁 = 𝑁
𝑥−1𝑦−1𝑥𝑦𝑁 = 𝑁

showing that 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁

Conversely, if 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁 then

𝑁 = 𝑁
𝑥−1𝑦−1𝑥𝑦𝑁 = 𝑁 [𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁]
(𝑦𝑥)−1𝑥𝑦𝑁 = 𝑁

𝑥𝑦𝑁 = 𝑦𝑥𝑁
𝑥𝑁𝑦𝑁 = 𝑦𝑁𝑥𝑁 [𝑁 normal]

𝑥𝑦 = 𝑦𝑥

showing that 𝑥 and 𝑦 commute in 𝐺.

Therefore, 𝑥 and 𝑦 commute in 𝐺 if and only if 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁.

41. Let 𝐺 be a group. Prove that 𝑁 = ⟨𝑥−1𝑦−1𝑥𝑦 ∣ 𝑥, 𝑦 ∈ 𝐺⟩ is a normal subgroup of 𝐺 and 𝐺/𝑁 is abelian
(𝑁 is called the commutator subgroup of 𝐺).

Proof. Let 𝑔 ∈ 𝐺 and 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁, 𝑥, 𝑦 ∈ 𝐺. Then

𝑔(𝑥−1𝑦−1𝑥𝑦)𝑔−1 = 𝑔(𝑥−1𝑔−1𝑔𝑦−1𝑔−1𝑔𝑥𝑔−1𝑔𝑦)𝑔−1

= (𝑔𝑥−1𝑔−1)(𝑔𝑦−1𝑔−1)(𝑔𝑥𝑔−1)(𝑔𝑦𝑔−1)
= (𝑔𝑥𝑔−1)−1(𝑔𝑦𝑔−1)−1(𝑔𝑥𝑔−1)(𝑔𝑦𝑔−1)
= 𝑥−1

𝑜 𝑦−1
𝑜 𝑥𝑜𝑦𝑜 ∈ 𝑁, 𝑥𝑜, 𝑦𝑜 ∈ 𝐺

Therefore, 𝑁 is a normal subgroup of 𝐺. 𝐺/𝑁 has cosets of the form 𝑥 = 𝑥𝑁 for 𝑥 ∈ 𝐺. Then, since
𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁 implies (𝑥−1𝑦−1𝑥𝑦)𝑁 = 𝑁. Therefore, for 𝑥, 𝑦 ∈ 𝐺 we would have that

𝑥𝑦 = 𝑥𝑁𝑦𝑁
= 𝑥𝑦𝑁
= 𝑥𝑦(𝑥−1𝑦−1𝑥𝑦)𝑁
= 𝑦𝑥𝑁
= 𝑦𝑁𝑥𝑁
= 𝑦𝑥

showing us that 𝐺/𝑁 is abelian.

42. Assume both 𝐻 and 𝐾 are normal subgroups of 𝐺 with 𝐻 ∩ 𝐾 = 1. Prove that 𝑥𝑦 = 𝑦𝑥 for all 𝑥 ∈ 𝐻 and
𝑦 ∈ 𝐾. [Show 𝑥−1𝑦−1𝑥𝑦 ∈ 𝐻 ∩ 𝐾.]



Proof. For 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐾 we have that 𝑦𝑥−1𝑦−1 ∈ 𝐻 and 𝑥𝑦𝑥−1 ∈ 𝐾. Then

𝑥(𝑦𝑥−1𝑦−1) ∈ 𝐻 and (𝑥𝑦𝑥−1)𝑦−1 ∈ 𝐾 and therefore 𝑥𝑦𝑥−1𝑦−1 ∈ 𝐻 ∩ 𝐾

and thus 𝑥𝑦𝑥−1𝑦−1 = 1 since 𝐻 ∩ 𝐾 = 1 we see that 𝑥𝑦(𝑦𝑥)−1 = 1 ⟹ 𝑥𝑦 = 𝑦𝑥.

43. Assume P = {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} is any partition of 𝐺 with the property that P is a group under the ”quotient
operation”defined as follows: to compute the product of𝐴𝑖 with𝐴𝑗 take any element 𝑎𝑖 of𝐴𝑖 and any element
𝑎𝑗 of 𝐴𝑗 and let 𝐴𝑖𝐴𝑗 be the element ofP containing 𝑎𝑖𝑎𝑗 (this operation is assumed to be well-defined). Prove
that the element of P that contains the identity of 𝐺 is a normal subgroup of 𝐺 and the elements of P are
the cosets of this subgroup (so P is just a quotient group of 𝐺 in the usual sense).

Proof. Let 𝐴𝑒 be the element of P that contains the identity of 𝐺. Then for any 𝐴𝑖 ∈ P we have that

𝐴𝑖𝐴𝑒𝐴−1
𝑖 = 𝐴𝑒 ⟹ 𝑎𝑖1𝑎−1

𝑖 = 1

as we can take any element from 𝐴𝑖 and 𝐴𝑒 and therefore 𝐴𝑒 is a normal subgroup of 𝐺.

The cosets of P/𝐴𝑒 are:
𝐴𝑖 = 𝐴𝑖𝐴𝑒 = 𝑎𝑖 ⋅ 1 = 𝑎𝑖 = 𝐴𝑖

Therefore, the elements of P are the cosets of this quotient group.

3.2 MORE ON COSETS AND LAGRANGE’S THEOREM

Let 𝐺 be a group.

1. Which of the following are permissible orders for subgroups of a group of order 120: 1,2,5,7,9,15,60,240?
For each permissible order give the corresponding index.

1, 2, 5, 15, 60𝑎𝑛𝑑120, 60, 24, 8, 2

2. Prove that the lattice of subgroups of 𝑆3 in Section 2.5 is correct (i.e., prove that it contains all subgroups
of 𝑆3 and that their pairwise joins and intersections are correctly drawn).

Proof. The elements of 𝑆3 have the cycle decompositions: 1, (1 2), (1 3), (2 3), (1 2 3), and (1 3 2). Since
|𝑆3| = 3! = 6 and 6 has the factors 1,2,3,6 we see that the order of the nontrivial subgroups must be either
2 or 3. From the lattice in Section 2.5 we see that the subgroups of 𝑆3 are ⟨(1 2)⟩, ⟨(1 3)⟩, ⟨(2 3)⟩, ⟨(1 2 3)⟩,
where the orders are 2,2,2,3, respectively.

In Exercise 2, Section 1.5 we drew the group table for 𝑆3 which showed that combinations (i.e., their pair-
wise joins and intersections) of these subgroups doesn’t yield any other subgroups and that the lattice of
subgroups of 𝑆3 in Section 2.5 is correct.

3. Prove that the lattice of subgroups of 𝑄8 in Section 2.5 is correct.

Proof. 𝑄8 has order 8 and we saw earlier that all of its subgroups are normal. The subgroups ⟨𝑖⟩, ⟨𝑗⟩, ⟨𝑘⟩ have
order 4 while ⟨−1⟩ has order 2. Once again, looking at the group table in Exercises 2, Section 1.5 we see that
these are all the subgroups and that the lattice of subgroups of 𝑄8 in Section 2.5 is correct.

4. Show that if |𝐺| = 𝑝𝑞 for some primes 𝑝 and 𝑞 (not necessarily distinct) then either 𝐺 is abelian or Z(𝐺) = 1.
[See Exercise 36 in Section 1.]



Proof. 𝐺 is either abelian or it’s not. If 𝐺 is abelian, we are done. Therefore, let’s assume that 𝐺 is non-abelian.
In Exercise 36, Section 1 we saw that if 𝐺/Z(𝐺) is cyclic then 𝐺 is abelian. Taking the contrapositive of this
we see that since 𝐺 is non-abelian, then 𝐺/Z(𝐺) is not cyclic. We know that 𝐺/Z(𝐺) is a quotient group since
Z(𝐺) ⊴ 𝐺. Let’s suppose that Z(𝐺) is nontrivial. Therefore, by Lagrange’s Theorem 𝐺/Z(𝐺) must either
have order 𝑝 or 𝑞. However, from Corollary 10, a group of prime order is cyclic, which is a contradiction.
Therefore, Z(𝐺) must be trivial.

5. Let 𝐻 be a subgroup of 𝐺 and fix some element 𝑔 ∈ 𝐺.

(a) Prove that 𝑔𝐻𝑔−1 is a subgroup of 𝐺 of the same order as 𝐻.

Proof. Let ℎ ∈ 𝐻 and for fixed element 𝑔 ∈ 𝐺 we have that 𝑔ℎ𝑔−1 ∈ 𝑔𝐻𝑔−1. Since 𝐻 is a group it is
closed under multiplication and inverses. Therefore, for ℎ1, ℎ2 ∈ 𝐻 we have that ℎ1ℎ−1

2 ∈ 𝐻 so that
𝑔(ℎ1ℎ−1

2 )𝑔−1 ∈ 𝑔𝐻𝑔−1 ⟹ 𝑔ℎ1(𝑔ℎ2)−1 ∈ 𝑔𝐻𝑔−1 so that 𝑔𝐻𝑔−1 is also closed under multiplication and
inverses and by the subgroup criterion 𝑔𝐻𝑔−1 is a subgroup of 𝐺.

Since 𝑔 is fixed, and each element of 𝑔𝐻𝑔−1 is of the form 𝑔ℎ (where ℎ can be the identity), we see that
|𝑔𝐻𝑔−1| = |𝐻|.

(b) Deduce that if 𝑛 ∈ ℤ+ and 𝐻 is the unique subgroup of 𝐺 of order 𝑛 then 𝐻 ⊴ 𝐺.

Proof. It is easy to see that if ℎ ∈ 𝐻 then ℎ is also in 𝑔𝐻𝑔−1 so that 𝐻 ⊆ 𝑔𝐻𝑔−1. From the proof of part
(a) we saw that the orders of 𝐻 and 𝑔𝐻𝑔−1 are equal, which in this case is 𝑛, so these groups must be
equal. Therefore, since 𝑔𝐻𝑔−1 = 𝐻 for any 𝑔 ∈ 𝐺 we see that 𝐻 ⊴ 𝐺.

6. Let 𝐻 ≤ 𝐺 and let 𝑔 ∈ 𝐺. Prove that if the right coset 𝐻𝑔 equals some left coset of 𝐻 in 𝐺 then it equals the
left coset 𝑔𝐻 and 𝑔 must be in N𝐺(𝐻).

Proof. If 𝐻𝑔 is equal to some left coset of 𝐻, say 𝑎𝐻 for 𝑎 ∈ 𝐺 then

𝐻𝑔 = 𝑎𝐻
⟹ 𝑔 = 𝑎
⟹ 𝑔 = 𝑎

⟹ 𝐻𝑔 = 𝑔𝐻

and therefore 𝐻 ⊴ 𝐺, which means 𝑔 must be an element in N𝐺(𝐻).

7. Let 𝐻 ≤ 𝐺 and define a relation ∼ on 𝐺 be 𝑎 ∼ 𝑏 if and only if 𝑏−1𝑎 ∈ 𝐻. Prove that ∼ is an equivalence
relation and describe the equivalence class of each 𝑎 ∈ 𝐺. Use this to prove Proposition 4.

Proof.

𝑎 ∼ 𝑎 ⟹ 𝑎−1𝑎 = 1 ∈ 𝐻 ⟹ 𝑎 ∼ 𝑎 [reflexive]
𝑎 ∼ 𝑏 ⟹ 𝑏−1𝑎 ∈ 𝐻 ⟹ (𝑏−1𝑎)−1 = 𝑎−1𝑏 ∈ 𝐻 ⟹ 𝑏 ∼ 𝑎 [symmetric]
𝑎 ∼ 𝑏 ⟹ 𝑏−1𝑎 ∈ 𝐻, 𝑏 ∼ 𝑐 ⟹ 𝑐−1𝑏 ∈ 𝐻 ⟹ (𝑐−1𝑏)(𝑏−1𝑎) = 𝑐−1𝑎 ∈ 𝐻 ⟹ 𝑎 ∼ 𝑐 [transitive]

Therefore, ∼ is an equivalence relation as it is reflexive, symmetric, and transitive. The equivalence class of
each 𝑎 ∈ 𝐺 is some coset 𝑎𝐻. Using this face we see that if 𝑏−1𝑎 ∈ 𝐻 then for ℎ = 𝑏−𝑎 we have

𝑏ℎ = 𝑏(𝑏−1𝑎) = 𝑎 ⟹ 𝑎 ∈ 𝑏𝐻

and since representatives of a coset are equal we see that 𝑎𝐻 = 𝑏𝐻, proving Proposition 4.



8. Prove that if 𝐻 and 𝐾 are finite subgroups of 𝐺 whose orders are relatively prime then 𝐻 ∩ 𝐾 = 1.

Proof. By Lagrange’s Theorem, if 𝐻 and 𝐾 are finite subgroups of 𝐺 whose orders are relatively prime, we
know that 𝐻 and 𝐾 cannot be subgroups of one another. That is, if 𝐻 ≰ 𝐾 and 𝐾 ≰ 𝐻 then 𝐻 ∩ 𝐾 = 1.

9. This exercise outlines a proof of Cauchy’s Theorem due to James McKay. Let 𝐺 be a finite group and let 𝑝
be a prime dividing |𝐺|. Let S denote the set of 𝑝-tuples of elements of 𝐺 the product of whose coordinates
is 1:

S = {(𝑥1, 𝑥2, … , 𝑥𝑝) ∣ 𝑥𝑖 ∈ 𝐺 and 𝑥1𝑥2 ⋯ 𝑥𝑝 = 1}

(a) Show that S has |𝐺|𝑝−1 elements, hence has order divisible by 𝑝.

Proof. From 𝑥1𝑥2 ⋯ 𝑥𝑝 = 1 we see that 𝑥𝑝 is dependent on the other coordinates, 𝑥𝑝 = (𝑥1𝑥2 ⋯ 𝑥𝑝−1)−1.
Therefore, we can restate S as {(𝑥1, 𝑥2, … , 𝑥𝑝−1, (𝑥1𝑥2 ⋯ 𝑥𝑝−1)−1) ∣ 𝑥𝑖 ∈ 𝐺}. From this we can see that S
will have order

|S | = |𝐺|1 ⋅ |𝐺|2 ⋯ |𝐺|𝑝−1 = |𝐺|𝑝−1

since for each coordinate in the 𝑝-tuples, there are |𝐺| options. Obviously |𝐺|𝑝−1 is divisible by 𝑝 since 𝑝
divides |𝐺|.

Define the relation ∼ on S by letting 𝛼 ∼ 𝛽 if 𝛽 is a cyclic permutation of 𝛼.

(b) Show that a cyclic permutation on an element of S is again an element of S .

Proof. An element of S has the form (𝑥1, 𝑥2, … , 𝑥𝑝) such that 𝑥𝑖 ∈ 𝐺 and whose product of coordinates
is equal to 1. Then, it is easy to to see that any cyclic permutation, say 𝛽 = (𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑝, 𝑥1, … , 𝑥𝑖−1),
of these coordinates is another element of S as we still have a 𝑝-tuple with coordinates from 𝐺 whose
product is equal to 1.

(c) Prove that ∼ is an equivalence relation on S.

Proof. 𝛼 ∼ 𝛼 since 𝛼 is the identity permutation of 𝛼 [reflexive].

𝛼 ∼ 𝛽 ⟹ 𝛽 ∼ 𝛼 since proof from part (b) showed us that a cyclic permutation of an element of S is
another element of S and therefore all the elements are permutations of one another [symmetric].

𝛼 ∼ 𝛽 and 𝛽 ∼ 𝛾 ⟹ 𝛼 ∼ 𝛾 since the composition of permutations is a permutation [transitive].

Therefore, ∼ is an equivalence relation.

(d) Prove that an equivalence class contains a single element if and only if it is of the form (𝑥, 𝑥, … , 𝑥) with
𝑥𝑝 = 1.

Proof. If (𝑥, 𝑥, … , 𝑥) with 𝑥𝑝 = 1 then since all cyclic permutations of this element still equal this element
then its equivalence class only has this one element.

Conversely, if an equivalence class only has one element then it is equal to its own permutations and
therefore we must have that (𝑥, 𝑥, … , 𝑥) with 𝑥𝑝 = 1.

Therefore, an equivalence class contains a single element if and only if it is of the form (𝑥, 𝑥, … , 𝑥) with
𝑥𝑝 = 1.

(e) Prove that every equivalence class has order 1 or 𝑝 (this uses the fact that 𝑝 is a prime). Deduce that
|𝐺|𝑝−1 = 𝑘 + 𝑝𝑑, where 𝑘 is the number of classes of size 1 and 𝑑 is the number of classes of size 𝑝.



Proof. From the proof of part (d) we saw that there exists an equivalence class with order 1. Suppose
that we do not have (𝑥, 𝑥, … , 𝑥) with 𝑥𝑝 = 1. Then we will have (𝑥1, 𝑥2, … , 𝑥𝑝) where some or all of the
𝑥𝑖 differ. The equivalence relation mandates that all elements of an equivalence class are cyclic 𝑝-cycles
of each other which means we can only have cycles where every coordinate of the 𝑝-tuple is shifted
by the same amount. This is a subtle distinction that is crucial to understand but is necessary if every
element will be a permutation of each other. Thus, each equivalence class can only have 𝑝 elements
since after 𝑝 iterations will we arrive back to the same element of the equivalence class.

From part (a) we saw that |S | = |𝐺|𝑝−1 and since ∼ partitions |S | it must partition |𝐺|𝑝−1. It will partition
it with 𝑘 classes of order 1 and 𝑑 classes of order 𝑝 so that |𝐺|𝑝−1 = 𝑘 + 𝑝𝑑.

(f) Since {(1, 1, … , 1)} is an equivalence class of size 1, conclude from (e) that there must be a nonidentity
element 𝑥 in 𝐺 with 𝑥𝑝 = 1, i.e., 𝐺 contains an element of order 𝑝. [Show 𝑝 ∣ 𝑘 and so 𝑘 > 1.]

Proof. From part (a) we saw that 𝑝 divides |𝐺|𝑝−1. From part (e) we saw that 𝑝 divides 𝑘 + 𝑝𝑑 which
implies 𝑝 divides 𝑘 and therefore 𝑘 must be a multiple of 𝑝, showing that 𝑘 > 1. Hence, there must be
a nonidentity element 𝑥 in 𝐺 with 𝑥𝑝 = 1.

10. Suppose 𝐻 and 𝐾 are subgroups of finite index in the (possibly infinite) group 𝐺 with |𝐺 ∶ 𝐻| = 𝑚 and
| 𝐺 ∶ 𝐾| = 𝑛. Prove that lcm(𝑚, 𝑛) < |𝐺 ∶ 𝐻 ∩ 𝐾| < 𝑚𝑛. Deduce that if 𝑚 and 𝑛 are relatively prime then
|𝐺 ∶ 𝐻 ∩ 𝐾| = |𝐺 ∶ 𝐻| ⋅ |𝐺 ∶ 𝐾|.

Proof. If we take the intersection of 𝐻 and 𝐾 then 𝐻 ∩ 𝐾 can partition 𝐾 into cosets and the elements in these
cosets will also be elements contained in the cosets of 𝐺 partitioned by 𝐻. That is

|𝐾 ∶ 𝐻 ∩ 𝐾| ≤ |𝐺 ∶ 𝐻| = 𝑚

where ≤ is for less than or equal to. Now we can multiple both sides of the inequality with |𝐺 ∶ 𝐾| to get

|𝐺 ∶ 𝐾| ⋅ |𝐾 ∶ 𝐻 ∩ 𝐾| ≤ |𝐺 ∶ 𝐾| ⋅ |𝐺 ∶ 𝐻| = 𝑛𝑚

𝐾 partitions 𝐺 and 𝐻 ∩ 𝐾 partitions 𝐾 so therefore 𝐻 ∩ 𝐾 partitions 𝐺 and we see that |𝐺 ∶ 𝐻 ∩ 𝐾| = |𝐺 ∶
𝐾| ⋅ |𝐾 ∶ 𝐻 ∩ 𝐾|. This shows that 𝑛 divides |𝐺 ∶ 𝐻 ∩ 𝐾|. We could have also made the same argument using
𝐻 instead of 𝐾 so therefore 𝑚 also divides |𝐺 ∶ 𝐻 ∩ 𝐾|. Since we know that 𝑚 and 𝑛 divide this, we get the
desired inequality (bounded below by lcm(𝑚, 𝑛)) and from this we can see that when (𝑚, 𝑛) = 1 that we
will have that it will be equal to 𝑚𝑛 and therefore |𝐺 ∶ 𝐻 ∩ 𝐾| = |𝐺 ∶ 𝐻| ⋅ |𝐺 ∶ 𝐾|.

11. Let 𝐻 ≤ 𝐾 ≤ 𝐺. Prove that |𝐺 ∶ 𝐻| = |𝐺 ∶ 𝐾| ⋅ |𝐾 ∶ 𝐻|. (do not assume 𝐺 is finite).

Proof. Let |𝐺 ∶ 𝐾| = 𝑝, |𝐾 ∶ 𝐻| = 𝑞 and then

𝐺 =
𝑝

⋃
𝑖=1

𝑔𝑖𝐾, 𝐾 =
𝑞

⋃
𝑗=1

𝑘𝑗𝐻

⟹ 𝐺 =
𝑝

⋃
𝑖=1

𝑞
⋃
𝑗=1

𝑔𝑖(𝑘𝑗𝐻) =
𝑝

⋃
𝑖=1

𝑞
⋃
𝑗=1

(𝑔𝑖𝑘𝑗)𝐻

which shows that 𝐺 is the disjoint union of 𝑝𝑞 cosets. Therefore, the number of elements of the coset space
is

|𝐺 ∶ 𝐻| = 𝑝𝑞 = |𝐺 ∶ 𝐾| ⋅ |𝐾 ∶ 𝐻|
Therefore, |𝐺 ∶ 𝐻| = |𝐺 ∶ 𝐾| ⋅ |𝐾 ∶ 𝐻|.



12. Let 𝐻 ≤ 𝐺. Prove that the map 𝑥 ↦ 𝑥−1 sends each left coset of 𝐻 in 𝐺 onto a right coset of 𝐻 and gives
a bijection between the set of left cosets and the set of right cosets of 𝐻 in 𝐺 (hence the number of left cosets
of 𝐻 in 𝐺 equals the number of right cosets).

Proof. Let 𝜑(𝑥) = 𝑥−1 and let 𝑔𝐻 be a left coset of 𝐻 in 𝐺. Then for 𝑔1ℎ, 𝑔2ℎ ∈ 𝑔𝐻

𝜑(𝑔1ℎ) = 𝜑(𝑔2ℎ)
(𝑔1ℎ)−1 = (𝑔2ℎ)−1

ℎ−1𝑔−1
1 = ℎ−1𝑔−1

2
ℎℎ−1𝑔−1

1 = ℎℎ−1𝑔−1
2

𝑔−1
1 = 𝑔−1

2
(𝑔−1

1 )−1 = (𝑔−1
2 )−1

𝑔1 = 𝑔2

therefore, 𝜑 is injective.

We can also see that for 𝑔−1ℎ−1 ∈ 𝑔𝐻 we have

𝜑(𝑔−1ℎ−1) = (𝑔−1ℎ−1)−1 = ℎ𝑔

which shows that 𝜑 is surjective and sends each left coset of 𝐻 tin 𝐺 onto a right coset of ℎ and gives a
bijection between the set of left cosets and the set of right cosets of 𝐻 in 𝐺 (hence the number of left cosets
of 𝐻 in 𝐺 equals the number of right cosets).

13. Fix any labeling of the vertices of a square and use this to identify 𝐷8 as a subgroup of 𝑆4. Prove that the
elements of 𝐷8 and ⟨(1 2 3)⟩ do not commute in 𝑆4.

Proof. Since the generators for 𝐷8 are 𝑠 and 𝑟, if we label the vertices of a square (starting with 1 in the top
right corner and then incremented clockwise) and look at the permutations of these numbers we see that
𝑠 = (2 4) and 𝑟 = (1 2 3 4). Then

(2 4)(1 2 3) = (1 4 2 3), (1 2 3)(2 4) = (1 2 4 3)
(1 2 3 4)(1 2 3) = (1 3 2 4), (1 2 3)(1 2 3 4) = (1 3 4 2)

Therefore, the elements of 𝐷8 and ⟨(1 2 3)⟩ do not commute in 𝑆4.

14. Prove that 𝑆4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.

Proof. From Proposition 13, if 𝐻 and 𝐾 are finite subgroups of a group we have

|𝐻𝐾| = |𝐻||𝐾|
|𝐻 ∩ 𝐾|

Let 𝐻 be a normal subgroup of 𝑆4 of order 8. Then from Corollary 15 we know that for any 𝐾 ≤ 𝑆4 that
𝐻𝐾 is a subgroup of 𝑆4. Since there are 9 elements in 𝑆4 of order 2, let the first 8 be elements in 𝐻 so that 𝐾
will be the subgroup generated by the last element and therefore the intersection of 𝐻 ∩ 𝐾 = 1. Then, from
Proposition 13 we have that |𝐻𝐾| = 16 but this is a contradiction as 𝑆4 has order 24 and 16 is not a divisor of
24. This is a contradiction. Therefore, there is no normal subgroup of order 8 in 𝑆4.

Similarly, there are 8 elements in 𝑆4 of order 3. If the first three comprised 𝐻 then there would be another
element of order 3 that we could generate a subgroup from. However, using the same argument above we
would see that we would have a subgroup of order 9, which is not a divisor of 24.



Therefore, 𝑆4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.

15. Let 𝐺 = 𝑆𝑛 and for fixed 𝑖 ∈ {1, 2, … , 𝑛} let 𝐺𝑖 be the stabilizer of 𝑖. Prove that 𝐺𝑖 ≅ 𝑆𝑛−1.

Proof. The stabilizer of 𝑖 is the set 𝐺𝑖 = {𝜎 ∈ 𝐺 ∣ 𝜎(𝑖) = 𝑖}. If we remove the 1-cycle of 𝑖 (i.e., the cycle (𝑖) in
the permutation 𝜎) for all 𝜎 ∈ 𝐺𝑖 thenwe have the symmetric group on Ω = {1, 2, … , 𝑖−1, 𝑖+1, … , 𝑛} so that
|Ω| = 𝑛 − 1. Two symmetric groups are isomorphic if the cardinality of the underlying sets being permuted
are equal. Therefore, 𝐺𝑖 ≅ 𝑆𝑛−1. Furthermore, fromExercise 10 in Section 1.6, we saw that symmetric groups
𝑆△ and 𝑆Ω are isomorphic if |△| = |Ω| (this showed an isomorphism exists).

16. Use Lagrange’s Theorem in the multiplicative group (ℤ/𝑝ℤ)× to prove Fermat’s Little Theorem: if 𝑝 is a
prime then 𝑎𝑝 ≡ 𝑎 (mod 𝑝) for all 𝑎 ∈ ℤ.

Proof. Since 𝑝 is prime the multiplicative group (ℤ/𝑝ℤ)× has order 𝑝 − 1. This is due to the fact that all
numbers less than 𝑝 are coprime to 𝑝 and therefore have multiplicative inverses. By Lagrange’s Theorem,
the order of the elements of this group must divide the order of the group. Then, let 𝑎 be an element in
(ℤ/𝑝ℤ)× so that ⟨𝑎⟩ = {1, 𝑎, 𝑎2, … , 𝑎𝑘} where 𝑘 ∣ 𝑝 − 1 ⟹ 𝑘𝑑 = 𝑝 − 1 for some 𝑑 ∈ ℤ. Therefore we must
have that

𝑎𝑝−1 = 𝑎𝑘𝑑 = (𝑎𝑘)𝑑 ≡ 1𝑑 = 1 ≡ 1 (mod 𝑝)
so that multiplying the congruence by a factor of 𝑎 we arrive at

𝑎(𝑎𝑝−1 − 1) ≡ 0 (mod 𝑝) ⟹ 𝑎𝑝 ≡ 𝑎 (mod 𝑝)

which proves Fermat’s Little Theorem.

17. Let 𝑝 be a prime and let 𝑛 be a positive integer. Find the order of 𝑝 in (ℤ/(𝑝𝑛 − 1)ℤ)× and deduce that
𝑛 ∣ 𝜑(𝑝𝑛 − 1) (here 𝜑 is Euler’s function).

Proof. The order of the element 𝑝 is the smallest number 𝑘 such that

𝑝𝑘 ≡ 1 (mod 𝑝𝑛 − 1)
𝑝𝑘 − 1 ≡ 0 (mod 𝑝𝑛 − 1)

⟹ 𝑝𝑛 − 1 ∣ 𝑝𝑘 − 1
⟹ 𝑛 = 𝑘

It cannot be a smaller number because then the divisor would be bigger than the dividend so we see that
the order of 𝑝 is 𝑛. Since, by Lagrange’s Theorem, |𝑝| must divide 𝜑(𝑝𝑛 − 1) we see that 𝑛 ∣ 𝜑(𝑝𝑛 − 1).

18. Let 𝐺 be a finite group, let 𝐻 be a subgroup of 𝐺 and let 𝑁 ⊴ 𝐺. Prove that if |𝐻| and |𝐺 ∶ 𝑁| are relatively
prime then 𝐻 ≤ 𝑁.

Proof. If 𝐺 is of prime order then the normal subgroups are trivial ones. Therefore, let’s assume that 𝐺 is not
of prime order. Then the we can write the order of 𝐺 as |𝐺| = 𝑝𝑞, for positive integers 𝑝 and 𝑞.

Let |𝐺 ∶ 𝑁| = 𝑞 so that |𝑁| = 𝑝. Since (|𝐻|, |𝐺 ∶ 𝑁|) = 1 we see that 𝐻 must not have any elements that
divide order 𝑞. Thus, 𝐻 must have elements that have orders that divide 𝑝 which means that the elements
of 𝐻 are also elements of 𝑁 which implies 𝐻 ≤ 𝑁.

Therefore, if |𝐻| and |𝐺 ∶ 𝑁| are relatively prime then 𝐻 ≤ 𝑁.



19. Prove that if 𝑁 is a normal subgroup of the finite group 𝐺 and (|𝑁|, |𝐺 ∶ 𝑁|) = 1 then 𝑁 is the unique
subgroup of 𝐺 of order |𝑁|.

Proof. If 𝐺 is of prime order then the normal subgroups are trivial ones. Therefore, let’s assume that 𝐺 is not
of prime order. Then the we can write the order of 𝐺 as |𝐺| = 𝑝𝑞, for positive integers 𝑝 and 𝑞.

Let |𝐺 ∶ 𝑁| = 𝑞 so that |𝑁| = 𝑝. Since (|𝑁|, |𝐺 ∶ 𝑁|) = 1 we see that 𝑝 and 𝑞 are relatively prime and therefore
𝑁 must not have any elements that divide the order 𝑞.

Similarly, any other subgroup of order 𝑝 would also be relatively prime to 𝑞 and therefore wouldn’t have
any elements that divide the order 𝑞. Therefore, this subgroup would have the same elements that 𝑁 does,
showing that they are equal and thus 𝑁 is the unique subgroup of 𝐺 of order |𝑁|.

Therefore, if 𝑁 is a normal subgroup of the finite group 𝐺 and (|𝑁|, |𝐺 ∶ 𝑁|) = 1 then 𝑁 is the unique
subgroup of 𝐺 of order |𝑁|.

20. If 𝐴 is an abelian group with 𝐴 ⊴ 𝐺 and 𝐵 is any subgroup of 𝐺 prove that 𝐴 ∩ 𝐵 ⊴ 𝐴𝐵.

Proof. Since 𝐴 and 𝐵 are both subgroups of 𝐺 and 𝐴 ⊴ 𝐺 we know from Corollary 15 that 𝐴𝐵 is a subgroup
of 𝐺. Since 𝐴𝐵 is a group we can show that 𝐴 ∩ 𝐵 ⊴ 𝐴𝐵 by looking at the normalizer of 𝐴 ∩ 𝐵 in 𝐴𝐵. Since
𝐴𝐵 is a group we have that 𝐴𝐵 = 𝐵𝐴 which means that for an element 𝑎𝑏 ∈ 𝐴𝐵 we have that 𝑎𝑏 = 𝑏′𝑎′ which
is an element of 𝐵𝐴. Therefore, for 𝑎𝑏 ∈ 𝐴𝐵 we have that 𝑏′𝑎′ gives us

(𝑏′𝑎′)𝑔(𝑏′𝑎′)−1 = 𝑏′𝑎′𝑔𝑎′−1𝑏′−1

= 𝑏′𝑔𝑎′𝑎′−1𝑏′−1 [𝑔 ∈ 𝐴 ∩ 𝐵]
= 𝑏′𝑔𝑏′−1 ∈ 𝐵 ⟹ ∈ 𝐴 ∩ 𝐵 [𝑔 ∈ 𝐴 ∩ 𝐵 ⟹ 𝑔 ∈ 𝐵]

Thus, we see that 𝐴 ∩ 𝐵 ⊴ 𝐴𝐵.

Therefore, if 𝐴 is an abelian group with 𝐴 ⊴ 𝐺 and 𝐵 is any subgroup of 𝐺 prove that 𝐴 ∩ 𝐵 ⊴ 𝐴𝐵.

21. Prove that ℚ has no proper subgroups of finite index. Deduce that ℚ/ℤ has no proper subgroups of
finite index. [Recall Exercise 21, Section 1.6 and Exercise 15, Section 1.]

Proof. Suppose that ℚ has a proper subgroup of finite index, say 𝑚. Since ℚ is abelian, the subgroup is
normal and partitions ℚ into 𝑚 cosets so that the quotient group has order 𝑚. By Lagrange’s Theorem and
Corollary 9 we know that if 𝑥 is an element in this quotient group then 𝑥𝑚 = 1. However, since this quotient
group is divisible (Exercise 14, Section 1) we also have that there exists 𝑦 in this quotient group such that
𝑥𝑚 = 𝑦, which is a contradiction since we have that 𝑥𝑚 = 1. Therefore, ℚ has no proper subgroups of finite
index.

Suppose that ℚ/ℤ has a proper subgroup of finite index. Then, since the quotient group of a divisible
abelian group is divisible and abelian, the same argument as above will arrive at a contradiction. Therefore,
we deduce that ℚ/ℤ has no proper subgroups of finite index.

22. Use Lagrange’s Theorem in the multiplicative group (ℤ/𝑛ℤ)× to prove Euler’s Theorem: 𝑎𝜑(𝑛) ≡ 1
(mod 𝑛) for every integer 𝑎 relatively prime to 𝑛, where 𝜑 denotes Euler’s 𝜑-function.

Proof. The order or (ℤ/𝑛ℤ)× is 𝜑(𝑛). Therefore, from Corollary 9 and 𝑎 ∈ (ℤ/𝑛ℤ)× we must have that

𝑎𝜑(𝑛) = 1 ≡ 1 (mod 𝑛).



Therefore, 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛) for every integer 𝑎 relatively prime to 𝑛, where 𝜑 denotes Euler’s 𝜑-function.

23. Determine the last two digits of 33100 . [Determine 3100 (mod 𝜑(100)) and use the previous exercise.]

Proof. As the hint suggests, let us first determine 3100 (mod 𝜑(100)). Since (3, 𝜑(100)) = 1 we can use
Euler’s Theorem to see that

3𝜑(𝜑(100)) ≡ 1 (mod 𝜑(100))
Since 𝜑(𝜑(100)) = 16 we therefore see that

316 ≡ 1 (mod 𝜑(100))

Using this, we can solve for 3100 (mod 𝜑(100))

3100 ≡ 316⋅6+4 ≡ (316)6 ⋅ 34 ≡ (1)6 ⋅ 34 ≡ 81 ≡ 1 (mod 𝜑(100))

Now, if 𝑚 = 𝑑 + 𝑘𝜑(𝑛), then

𝑎𝑚 = 𝑎𝑑+𝑘𝜑(𝑛) = 𝑎𝑑(𝑎𝜑(𝑛))𝑘 ≡ 𝑎𝑑 (mod 𝑛)Therefore, we can see that using both the above expressions we get33100 ≡ 31 ≡ 3 (mod 100)

Therefore, the last two digits of 33100 is 03.

3.3 THE ISOMORPHISM THEOREMS

Let 𝐺 be a group.

1. Let 𝐹 be a finite field of order 𝑞 and let 𝑛 ∈ ℤ+. Prove that |𝐺𝐿𝑛(𝐹) ∶ 𝑆𝐿𝑛(𝐹)| = 𝑞 − 1. [See Exercise 35,
Section 1.]

Proof. From Exercise 35 in Section 1 we saw that 𝑆𝐿𝑛(𝐹) ⊴ 𝐺𝐿𝑛(𝐹) and 𝐺𝐿𝑛(𝐹)/𝑆𝐿𝑛(𝐹) ≅ 𝐹× with the map
det(𝐺𝐿𝑛(𝐹)) ↦ 𝐹×. Since det(𝐺𝐿𝑛(𝐹)) ↦ 𝐹× is an isomorphic map by Corollary 17(2) we see that |𝐺𝐿𝑛(𝐹) ∶
𝑆𝐿𝑛(𝐹)| = |𝜑(𝐺𝐿𝑛(𝐹))| = |𝐹×|. Since the order of 𝐹 is 𝑞, then the order of 𝐹× is 𝑞 − 1 which are the nonzero
elements of the field.

Therefore, |𝐺𝐿𝑛(𝐹) ∶ 𝑆𝐿𝑛(𝐹)| = 𝑞 − 1.

2. Prove all parts of the Lattice Isomorphism Theorem.

The Fourth or Lattice Isomorphism Theorem:

Let 𝐺 be a group and let 𝑁 be a normal subgroup of 𝐺. Then there is a bijection from the set of subgroups 𝐴
of 𝐺 which contain 𝑁 onto the set of subgroups 𝐴 = 𝐴/𝑁 of 𝐺/𝑁. In particular, every subgroup of 𝐺 is of the
form 𝐴/𝑁 for some subgroup 𝐴 of 𝐺 containing 𝑁 (namely, its preimage in 𝐺 under the natural projection
homomorphism from 𝐺 to 𝐺/𝑁). This bijection has the following properties: for all 𝐴, 𝐵 ≤ 𝐺 with 𝑁 ≤ 𝐴
and 𝑁 ≤ 𝐵,

1. 𝐴 ≤ 𝐵 if and only if 𝐴 ≤ 𝐵,



Proof. If 𝐴 ≤ 𝐵 then we know that for 𝑥, 𝑦 ∈ 𝐴 that 𝑥𝑦−1 ∈ 𝐴. Then for 𝑎 ∈ 𝐴 we have that,

𝑎 = 𝑎𝑁 ∈ 𝐴 ⟹ ∈ 𝐵 [𝑎 ∈ 𝐴 ⟹ 𝑎 ∈ 𝐵]
= 𝑥𝑦−1𝑁 ∈ 𝐴 ⟹ ∈ 𝐵 [𝑎 = 𝑥𝑦−1 ∈ 𝐴 ⟹ ∈ 𝐵]

= 𝑥𝑦−1 ∈ 𝐴 ⟹ ∈ 𝐵

Therefore, by the subgroup criterion 𝐴 ≤ 𝐵.

Conversely, if 𝐴 ≤ 𝐵 then we know that for 𝑥, 𝑦 ∈ 𝐴 that 𝑥𝑦−1 ∈ 𝐴. Then

𝑥𝑦−1 = 𝑥𝑦−1𝑁 ∈ 𝐴 ⟹ ∈ 𝐵 ⟹ 𝑥𝑦−1 ∈ 𝐴 ⟹ ∈ 𝐵

Therefore, by the subgroup criterion 𝐴 ≤ 𝐵.

2. if 𝐴 ≤ 𝐵, then |𝐵 ∶ 𝐴| = |𝐵 ∶ 𝐴|,

Proof. From The Third Isomorphism Theorem we see that 𝐵/𝐴 = (𝐵/𝑁)/(𝐴/𝑁) ≅ 𝐵/𝐴 and since they
are isomorphic there is an injective maps which implies |𝐵 ∶ 𝐴| = |𝐵 ∶ 𝐴|.

3. ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩,

Proof. If 𝑔 ∈ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩/𝑁 then

𝑔 = (𝑎𝜖1
1 ⋯ 𝑎𝜖𝑛𝑛 𝑏𝛾1

1 ⋯ 𝑏𝛾𝑛𝑛 )𝑁
= (𝑎𝜖1

1 ⋯ 𝑎𝜖𝑛𝑛 𝑁)(𝑏𝛾1
1 ⋯ 𝑏𝛾𝑛𝑛 𝑁)

= (𝑎𝜖1
1 𝑁 ⋯ 𝑎𝜖𝑛𝑛 𝑁)(𝑏𝛾1

1 𝑁 ⋯ 𝑏𝛾𝑛𝑛 𝑁)
∈ ⟨𝐴, 𝐵⟩ ⟹ ⟨𝐴, 𝐵⟩ ⊂ ⟨𝐴, 𝐵⟩

If 𝑔 ∈ ⟨𝐴, 𝐵⟩ then

𝑔 = (𝑎𝜖1
1 𝑁 ⋯ 𝑎𝜖𝑛𝑛 𝑁)(𝑏𝛾1

1 𝑁 ⋯ 𝑏𝛾𝑛𝑛 𝑁)
= (𝑎𝜖1

1 ⋯ 𝑎𝜖𝑛𝑛 𝑁)(𝑏𝛾1
1 ⋯ 𝑏𝛾𝑛𝑛 𝑁)

= (𝑎𝜖1
1 ⋯ 𝑎𝜖𝑛𝑛 𝑏𝛾1

1 ⋯ 𝑏𝛾𝑛𝑛 )𝑁
∈ ⟨𝐴, 𝐵⟩ ⟹ ⟨𝐴, 𝐵⟩ ⊂ ⟨𝐴, 𝐵⟩

Therefore, ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩.

4. 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵, and

Proof. If 𝑔 ∈ 𝐴 ∩ 𝐵 = (𝐴 ∩ 𝐵)/𝑁 then

𝑔 ∈ (𝐴 ∩ 𝐵)𝑁
∈ 𝐴𝑁 ∩ 𝐵𝑁
∈ 𝐴 ∩ 𝐵

which implies that 𝐴 ∩ 𝐵 ⊆ 𝐴 ∩ 𝐵.

If 𝑔 ∈ 𝐴 ∩ 𝐵 then

𝑔 ∈ 𝐴𝑁 ∩ 𝐵𝑁
∈ (𝐴 ∩ 𝐵)𝑁



∈ 𝐴 ∩ 𝐵

which implies that 𝐴 ∩ 𝐵 ⊆ 𝐴 ∩ 𝐵.

Therefore, 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵.

5. 𝐴 ⊴ 𝐺 if and only if 𝐴 ⊴ 𝐺.

Proof. If 𝐴 ⊴ 𝐺 then

𝑔𝑎𝑔−1 = 𝑎 [for some 𝑎 ∈ 𝐴 and for all 𝑔 ∈ 𝐺]
⟹ (𝑔𝑎𝑔−1)𝑁 = (𝑎)𝑁 [𝑁 ⊴ 𝐺, 𝑁 ≤ 𝐴]

⟹ 𝑔𝑁𝑎𝑁𝑔−1𝑁 = 𝑎𝑁 [𝑁 is normal - kernel of a homomorphism - well defined]
⟹ 𝐴 ⊴ 𝐺

Conversely, if 𝐴 ⊴ 𝐺 then

𝑔𝑁𝑎𝑁𝑔−1𝑁 = 𝑎𝑁
⟹ (𝑔𝑎𝑔−1)𝑁 = (𝑎)𝑁 [𝑁 is normal - kernel of a homomorphism - well defined]

⟹ 𝑔𝑎𝑔−1 = 𝑎 [for some 𝑎 ∈ 𝐴 and for all 𝑔 ∈ 𝐺]
⟹ 𝐴 ⊴ 𝐺

Therefore, 𝐴 ⊴ 𝐺 if and only if 𝐴 ⊴ 𝐺.

3. Prove that if 𝐻 is a normal subgroup of 𝐺 of prime index 𝑝 then for all 𝐾 ≤ 𝐺 either

(i) 𝐾 ≤ 𝐻 or

(ii) 𝐺 = 𝐻𝐾 and |𝐾 ∶ 𝐾 ∩ 𝐻| = 𝑝.

Proof. Since 𝐻 is a normal subgroup of 𝐺 we know that for any 𝐾 ≤ 𝐺 that 𝐻𝐾 is a subgroup of 𝐺.

(i) If 𝐺 ≠ 𝐻𝐾 then since |𝐺|
|𝐻| = |𝐺|

|𝐻𝐾|
|𝐻𝐾|
|𝐻| = 𝑝 we see that

|𝐺|
|𝐻𝐾| ≠ 1 ⟹ |𝐻𝐾|

|𝐻| = 1 ⟹ 𝐻𝐾 = 𝐻 ⟹ 𝐾 ⊆ 𝐻 ⟹ 𝐾 ≤ 𝐻.

(ii) If 𝐺 = 𝐻𝐾 then since |𝐺 ∶ 𝐻| = 𝑝, we have |𝐻𝐾 ∶ 𝐻| = 𝑝 and fromThe Second or Diamond Isomorphism
Theorem we know that 𝐻𝐾/𝐻 ≅ 𝐾/(𝐾 ∩ 𝐻) which implies |𝐻𝐾 ∶ 𝐻| ≅ |𝐾 ∶ 𝐾 ∩ 𝐻| = 𝑝. If 𝐺 ≠ 𝐻𝐾, since
𝐻 is normal in 𝐺 we know that 𝐻𝐾 is a subgroup of 𝐺. Therefore, |𝐺 ∶ 𝐻𝐾| must be a number that is less
than 𝑝.

4. Let 𝐶 be a normal subgroup of the group 𝐴 and let 𝐷 be a normal subgroup of the group 𝐵. Prove that
(𝐶 × 𝐷) ⊴ (𝐴 × 𝐵) and (𝐴 × 𝐵)/(𝐶 × 𝐷) ≅ (𝐴/𝐶) × (𝐵/𝐷).

Proof. Since the Cartesian product is component wise we see that for (𝑎, 𝑏) ∈ 𝐴 × 𝐵 and (𝑐, 𝑑) ∈ 𝐶 × 𝐷 that

(𝑎, 𝑏)(𝑐, 𝑑)(𝑎, 𝑏)−1 = (𝑎, 𝑏)(𝑐, 𝑑)(𝑎−1, 𝑏−1)
= (𝑎𝑐𝑎−1, 𝑏𝑑𝑏−1)
= (𝑐′, 𝑑′) ∈ (𝐶 × 𝐷) [for some 𝑐′ ∈ 𝐶 and 𝑑′ ∈ 𝐷]



Showing that (𝐶 × 𝐷) ⊴ (𝐴 × 𝐵).

Let 𝜑 ∶ (𝐴 × 𝐵)/(𝐶 × 𝐷) → (𝐴/𝐶) × (𝐵/𝐷) such that 𝜑((𝑎, 𝑏)/(𝑐, 𝑑)) = (𝑎/𝑐, 𝑏/𝑑). This is a homomorphism
since

𝜑 ((𝑎1, 𝑏1)
(𝑐1, 𝑑1) ⋅ (𝑎2, 𝑏2)

(𝑐2, 𝑑2)) = 𝜑 ((𝑎1𝑎2, 𝑏1𝑏2)
(𝑐1𝑐2, 𝑑1𝑑2))

= (𝑎1𝑎2
𝑐1𝑐2

, 𝑏1𝑏2
𝑑1𝑑2

)

= (𝑎1
𝑐1

, 𝑏1
𝑑1

) (𝑎2
𝑐2

, 𝑏2
𝑑2

)

= 𝜑 ((𝑎1, 𝑏1)
(𝑐1, 𝑑1)) 𝜑 ((𝑎2, 𝑏2)

(𝑐2, 𝑑2))

It is easy to see that this is also an isomorphism since the coordinates of the tuples are elements from the
groups so injectivity and surjectivity follow easily.

Therefore, we see that (𝐴 × 𝐵)/(𝐶 × 𝐷) ≅ (𝐴/𝐶) × (𝐵/𝐷).

5. Let 𝑄𝐷16 = ⟨𝜎, 𝜏⟩ be the quasidihedral group described in Exercise 11 of Section 2.5. Prove that ⟨𝜎4⟩ is
normal in 𝑄𝐷16 and use the Lattice Isomorphism Theorem to draw the lattice of subgroups of 𝑄𝐷16/⟨𝜎4⟩.
Which group of order 8 has the same lattice as this quotient? Use generators and relations for 𝑄𝐷16/⟨𝜎4⟩ to
decide the isomorphism type of this group.

Proof. 𝑄𝐷16 = ⟨𝜎, 𝜏 ∣ 𝜎8 = 𝜏2 = 1, 𝜎𝜏 = 𝜏𝜎3⟩

It is easy to manually verify ⟨𝜎4⟩ is normal in 𝑄𝐷16 since the generators are 𝜏 and 𝜎 .

𝜎𝜎4𝜎−1 = 𝜎4

𝜏𝜎4𝜏−1 = 𝜏𝜎3𝜏𝜎3 [𝜏 = 𝜏−1, 𝜎𝜏 = 𝜏𝜎3]
= 𝜏𝜎2𝜏𝜎6

= 𝜏𝜎𝜎9

= 𝜏𝜏𝜎12
= 𝜎4 ∈ ⟨𝜎4⟩

Therefore, ⟨𝜎4⟩ ⊴ 𝑄𝐷16.

𝑄𝐷16/⟨𝜎4⟩

⟨𝜎2, 𝜏⟩
⟨𝜎4⟩

⟨𝜎⟩
⟨𝜎4⟩

⟨𝜎2, 𝜏𝜎⟩
⟨𝜎4⟩

⟨𝜎4, 𝜏𝜎2⟩
⟨𝜎4⟩

⟨𝜎4, 𝜏⟩
⟨𝜎4⟩

⟨𝜎2⟩
⟨𝜎4⟩

⟨𝜏𝜎⟩
⟨𝜎4⟩

⟨𝜏𝜎3⟩
⟨𝜎4⟩

⟨𝜎4⟩
⟨𝜎4⟩



The group of order 8 that has the same lattice as this quotient is 𝐷8. The generators and relations for
𝑄𝐷16/⟨𝜎4⟩ = ⟨𝜎, 𝜏 ∣ 𝜎4 = 𝜏2 = 1, 𝜎𝜏 = 𝜏𝜎3 = 𝜏𝜎−1⟩ which is isomorphic to 𝐷8.

6. Let 𝑀 = ⟨𝑢, 𝑣⟩ be the modular group of order 16 described in Exercise 14 of Section 2.5. Prove that ⟨𝑣4⟩ is
normal in 𝑀 and use the Lattice Isomorphism Theorem to draw the lattice of subgroups of 𝑀/⟨𝑣4⟩. Which
group of order 8 has the same lattice as this quotient? Use generators and relations for 𝑀/⟨𝑣4⟩ to decide the
isomorphism type of this group.

Proof. 𝑀 = ⟨𝑢, 𝑣 ∣ 𝑢2 = 𝑣8 = 1, 𝑣𝑢 = 𝑢𝑣5⟩ It is easy tomanually verify ⟨𝑣4⟩ is normal in 𝑀 since the generators
are 𝑢 and 𝑣.

𝑣𝑣4𝑣−1 = 𝑣4

𝑢𝑣4𝑢−1 = 𝑢𝑣3𝑢𝑣5 [𝑢 = 𝑢−1, 𝑣𝑢 = 𝑢𝑣5]
= 𝑢𝑣2𝑢𝑣10

= 𝑢𝑣𝑢𝑣15

= 𝑢𝑢𝑣20

= 𝑣4 ∈ ⟨𝑣4⟩

Therefore, ⟨𝑣4⟩ ⊴ 𝑀.

𝑀/⟨𝑣4⟩

⟨𝑢, 𝑣2⟩
⟨𝑣4⟩

⟨𝑢𝑣⟩
⟨𝑣4⟩

⟨𝑣⟩
⟨𝑣4⟩

⟨𝑢, 𝑣4⟩
⟨𝑣4⟩

⟨𝑢𝑣2⟩
⟨𝑣4⟩

⟨𝑣2⟩
⟨𝑣4⟩

⟨𝑣4⟩
⟨𝑣4⟩

The group of order 8 that has the same lattice as this quotient is 𝑍2 × 𝑍4. The generators and relations for
𝑀/⟨𝑣4⟩ = ⟨𝑢, 𝑣 ∣ 𝑣4 = 𝑢2 = 1, 𝑣𝑢 = 𝑢𝑣5 = 𝑢𝑣⟩ which is isomorphic to 𝑍2 × 𝑍4.

7. Let 𝑀 and 𝑁 be normal subgroups of 𝐺 such that 𝐺 = 𝑀𝑁. Prove that 𝐺/(𝑀 ∩ 𝑁) ≅ (𝐺/𝑀) × (𝐺/𝑁).
[Draw the lattice.]

Proof. If we draw the lattice, similar to Figure 6 in the text, we see that since 𝑀 and 𝑁 are both normal in 𝐺,
both sides of the lattice give 𝑀𝑁/𝑀 ≅ 𝑀/(𝑀 ∩𝑁) and 𝑀𝑁/𝑁 ≅ 𝑁/(𝑀 ∩𝑁) from the Second Isomorphism
Theorem. Therefore, multiplying these together we see that

𝑀/(𝑀 ∩ 𝑁) ⋅ 𝑁/(𝑀 ∩ 𝑁) ≅ 𝑀𝑁/𝑀 × 𝑀𝑁/𝑁
𝐺/(𝑀 ∩ 𝑁) ≅ 𝐺/𝑀 × 𝐺/𝑁 [can combine similar cosets]

8. Let 𝑝 be a prime and let 𝐺 be the group of 𝑝-power roots of 1 in ℂ (cf. Exercise 18, Section 2.4). Prove that
the map 𝑧 ↦ 𝑧𝑝 is a surjective homomorphism. Deduce that 𝐺 is isomorphic to a proper quotient of itself.



Proof. 𝐺 = {𝑧 ∈ ℂ ∣ 𝑧𝑝𝑛 = 1 for some 𝑛 ∈ ℤ+ and 𝑝 prime} and let 𝜑 be the map 𝑧 ↦ 𝑧𝑝 such that 𝜑 ∶ 𝐺 → 𝐺
and 𝜑(𝑧) = 𝑧𝑝. 𝜑 is a homomorphism since

𝜑(𝑧1𝑧2) = (𝑧1𝑧2)𝑝

= 𝑧𝑝
1𝑧𝑝

2
= 𝜑(𝑧1)𝜑(𝑧2)

To show that 𝜑 is surjective we will need to show that for any element 𝑧 ∈ 𝐺 that there exists another 𝑧 ∈ 𝐺
such that the criteria 𝑧𝑝𝑛 = 1 is still held. Let 𝑧 ∈ im𝜑 so that

𝜑(𝑧1) = 𝑧
⟹ 𝑧1 = 𝑧1/𝑝 [𝜑−1(𝑧) = 𝑧1/𝑝]

For 𝑧1 to be an element in 𝐺 it must be a 𝑝-power root of unity in ℂ. Therefore, for some 𝑘 ∈ ℤ+, we must
have that (𝑧1)𝑝𝑘 = 1. Therefore

(𝑧1)𝑝𝑘 = (𝑧1/𝑝)𝑝𝑘

= (𝑧1/𝑝)𝑝𝑛+1 [𝑘 = 𝑛 + 1]
= (𝑧1/𝑝)𝑝𝑝𝑛

= (𝑧)𝑝𝑛 = 1

showing that 𝑧𝑝𝑘

1 = 1 and therefore is in 𝐺. Thus, 𝜑 is surjective.

Since 𝜑 is surjective and ker𝜑 is the 𝑝-roots of unity (i.e., the kernel is not trivial and therefore 𝜑 is not
injective), by the First Isomorphism Theorem we can deduce that there is a proper quotient of 𝐺 that is
isomorphic to 𝐺.

9. Let 𝑝 be a prime and let 𝐺 be a group of order 𝑝𝑎𝑚, where 𝑝 does not divide 𝑚. Assume 𝑃 is a subgroup of
𝐺 of order 𝑝𝑎 and 𝑁 is a normal subgroup of 𝐺 of order 𝑝𝑏𝑛, where 𝑝 does not divide 𝑛. Prove that |𝑃∩𝑁| = 𝑝𝑏

and |𝑃𝑁/𝑁| = 𝑝𝑎−𝑏. (The subgroup 𝑃 of 𝐺 is called a Sylow p-subgroup of 𝐺. This exercise shows that the
intersection of any Sylow 𝑝-subgroup of 𝐺 with a normal subgroup 𝑁 is a Sylow 𝑝-subgroup of 𝑁.)

Proof. Since 𝑃 ≤ 𝐺 and 𝑁 ⊴ 𝐺 we know that 𝑃𝑁 ≤ 𝐺. From Proposition 13 we know that |𝑃𝑁| = |𝑃||𝑁|/|𝑃 ∩
𝑁| ⟹ |𝑃 ∩ 𝑁| = |𝑃||𝑁|/|𝑃𝑁|. The order of 𝑃𝑁 is the number of elements that are in 𝑃 and 𝑁, but those that
are not in both. Since |𝐺| = 𝑝𝑎𝑚, |𝑃| = 𝑝𝑎, and |𝑁| = 𝑝𝑏𝑛, we know from Cauchy’s Theorem that 𝐺, 𝑃, and
𝑁 all have elements that have order 𝑝. Additionally, from Lagrange’s Theorem we know that the order of
the elements of a group must divide the order of the group, which shows that every element in 𝑃 must be a
power of 𝑝. Therefore, the elements in 𝑁 that are also in 𝑃 are the elements that are a power of 𝑝. Thus, the
order of 𝑃𝑁 is 𝑝𝑎𝑛 (i.e., the 𝑝𝑏 elements in 𝑁 are also in 𝑃 so they were not counted) so we then see that

|𝑃 ∩ 𝑁| = |𝑃||𝑁|/|𝑃𝑁| = 𝑝𝑎𝑝𝑏𝑛
𝑝𝑎𝑛 = 𝑝𝑏

From this it is easy to see that
|𝑃𝑁/𝑁| = 𝑝𝑎𝑛

𝑝𝑏𝑛
= 𝑝𝑎−𝑏



10. Generalize the preceding exercise as follows. A subgroup 𝐻 of a finite group 𝐺 is called a Hall subgroup
of 𝐺 if its index in 𝐺 is relatively prime to its order: (|𝐺 ∶ 𝐻|, |𝐻|) = 1. Prove that if 𝐻 is a Hall subgroup of
𝐺 and 𝑁 ⊴ 𝐺, then 𝐻 ∩ 𝑁 is a Hall subgroup of 𝑁 and 𝐻𝑁/𝑁 is a Hall subgroup of 𝐺/𝑁.

Proof. If 𝐻 is a Hall subgroup of 𝐺 and 𝑁 ⊴ 𝐺, to show that 𝐻 ∩ 𝑁 is a Hall subgroup of 𝑁 and 𝐻𝑁/𝑁 is a
Hall subgroup of 𝐺/𝑁, we will show that the indexes and orders of these subgroups divide |𝐺 ∶ 𝐻| and |𝐻|
respectively. This will show that these divisors must also be relatively prime to each other.

First, to show that (|𝑁 ∶ 𝐻 ∩ 𝑁|, |𝐻 ∩ 𝑁|) = 1 we will show that |𝑁 ∶ 𝐻 ∩ 𝑁| divides |𝐺 ∶ 𝐻| and |𝐻 ∩ 𝑁|
divides |𝐻|, respectively. From Second Isomorphism Theorem we see that

𝐻/(𝐻 ∩ 𝑁) ≅ 𝐻𝑁/𝑁

so therefore |𝐻 ∩ 𝑁| is a divisor of |𝐻| (isomorphism is injective, hence they have the same order). Since 𝐻𝑁
is a subgroup of 𝐺 we know that it divides the order of 𝐺 and from Proposition 13 we see that

|𝑁|
|𝐻 ∩ 𝑁| = |𝐻𝑁|

|𝐻|

⟹ |𝐻𝑁|
|𝐻| ⋅ |𝐺|

|𝐻𝑁| = |𝐺|
|𝐻|

showing use that |𝑁|/|𝐻 ∩ 𝑁| is a divisor of |𝐺|/|𝐻|. Therefore, (|𝑁 ∶ 𝐻 ∩ 𝑁|, |𝐻 ∩ 𝑁|) = 1

Second, to show that (|𝐺/𝑁 ∶ 𝐻𝑁/𝑁|, |𝐻𝑁/𝑁|) = 1 we will show that |𝐺/𝑁 ∶ 𝐻𝑁/𝑁| divides |𝐺 ∶ 𝐻| and
|𝐻𝐻/𝑁| divides |𝐻|, respectively. We see from the above that since

𝐻/(𝐻 ∩ 𝑁) ≅ 𝐻𝑁/𝑁

that |𝐻𝑁/𝑁| is a divisor of |𝐻|. Then for |𝐺/𝑁|/|𝐻𝑁/𝑁| ⟹ |𝐺|/|𝐻𝑁| which we already showed divides
|𝐺 ∶ 𝐻|. Therefore, (|𝐺/𝑁 ∶ 𝐻𝑁/𝑁|, |𝐻𝑁/𝑁|) = 1.

3.4 COMPOSITION SERIES AND THE HÖLDER PROGRAM

1. Prove that if 𝐺 is an abelian simple group then 𝐺 ≅ 𝑍𝑝 for some prime 𝑝 (do not assume 𝐺 is a finite
group).

Proof. Since 𝐺 is abelian, any subgroup of 𝐺 is normal. However, since 𝐺 is a simple group we know that its
only normal subgroups are 1 and 𝐺. Therefore, since its only normal subgroups are 1 and 𝐺, it therefore,
does not contain any other subgroups.

We will now show that it must also be finite. Assume that 𝐺 is infinite and that 𝑥 ∈ 𝐺 such that 𝑥 ≠ 1. Then
we must have that 𝐻 = ⟨𝑥⟩ is a subgroup of 𝐺. If 𝐻 ≠ 𝐺, then we have a proper subgroup of 𝐺, which is a
contradiction, since 𝐺 is a simple group. If 𝐻 = 𝐺, then we have an infinite cyclic group, which we know
is isomorphic to ℤ but ℤ contains proper subgroups, which is also a contradiction. Therefore, 𝐺 must be
finite.

Since 𝐺 is finite, and its only subgroups are 1 and 𝐺, then by Lagrange’s Theorem it must be of prime order
since it doesn’t contain any other subgroups. Since 𝐺 is of prime order, by Cauchy’s Theorem we know that
𝐺 must contain an element of prime order and therefore 𝐺 must be generated by this element. Therefore 𝐺
is a cyclic group of prime order, 𝐺 ≅ 𝑍𝑝.



2. Exhibit all 3 composition series for 𝑄8 and all 7 composition series for 𝐷8. List the composition factors in
each case.

𝐷8:

1 ⊴ ⟨𝑠⟩ ⊴ ⟨𝑠, 𝑟2⟩ ⊴ 𝐷8
1 ⊴ ⟨𝑟2𝑠⟩ ⊴ ⟨𝑠, 𝑟2⟩ ⊴ 𝐷8
1 ⊴ ⟨𝑟2⟩ ⊴ ⟨𝑠, 𝑟2⟩ ⊴ 𝐷8
1 ⊴ ⟨𝑟2⟩ ⊴ ⟨𝑟⟩ ⊴ 𝐷8
1 ⊴ ⟨𝑟2⟩ ⊴ ⟨𝑟𝑠, 𝑟2⟩ ⊴ 𝐷8
1 ⊴ ⟨𝑟𝑠⟩ ⊴ ⟨𝑟𝑠, 𝑟2⟩ ⊴ 𝐷8
1 ⊴ ⟨𝑟3𝑠⟩ ⊴ ⟨𝑟𝑠, 𝑟2⟩ ⊴ 𝐷8

𝑄8:

1 ⊴ ⟨𝑖⟩ ⊴ 𝑄8
1 ⊴ ⟨𝑗⟩ ⊴ 𝑄8
1 ⊴ ⟨𝑘⟩ ⊴ 𝑄8

3. Find a composition series for the quasidihedral group of order 16 (cf. Exercise 11, Section 2.5). Deduce
that 𝑄𝐷16 is solvable.

Since 𝑟 commutes with all of 𝑄𝐷16 we know that the subgroups generated from this are all normal. Ad-
ditionally, looking at the composition factors of the subgroups generated from 𝑟 we see that they are all
simple. Therefore, a composition series for the quasidihedral group of order 16 is:

1 ⊴ ⟨𝑟4⟩ ⊴ ⟨𝑟2⟩ ⊴ ⟨𝑟⟩ ⊴ 𝑄𝐷16

Since each of these composition factors are abelian we see that 𝐺 is solvable.

4. Use Cauchy’s Theorem and induction to show that a finite abelian group has a subgroup of order 𝑛 for
each positive divisor 𝑛 of its order.

Proof. Let 𝐺 be a finite abelian group.

base case: |𝐺| = 1, which is trivial.

induction hypothesis: |𝐺| = 𝑛 − 1. Suppose that subgroups of 𝐺 exist for all 𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1, where 𝑘 ∣ 𝑛 − 1.

induction step: |𝐺| = 𝑛. Let 𝑚 be a divisor of 𝑛. If 𝑚 is prime, then by Cauchy’s Theorem there exists an
element of order 𝑚 and thus a subgroup of order 𝑚. If 𝑚 is not prime, then 𝑚 is a composite number. Let
𝑚 = 𝑘𝑝 for some prime 𝑝. By Cauchy’s Theorem there is 𝑔 ∈ 𝐺 such that |𝑔| = 𝑝 and therefore |⟨𝑔⟩| = 𝑝. Since
𝐺 is abelian, all of its subgroups are normal so we have ⟨𝑔⟩ ⊴ 𝐺 ⟹ 𝐺/⟨𝑔⟩ and by the induction hypothesis
we have |𝐺/⟨𝑔⟩| = 𝑘 (since 𝑝 ≠ 1 we know that we are in the range 1 ≤ 𝑘 ≤ 𝑛 − 1).

Therefore, for 𝑥 ∈ 𝐺/⟨𝑔⟩ we have that

|𝑥| = 𝑘 ⟹ (𝑥)𝑘 = (𝑥⟨𝑔⟩)𝑘 = 𝑥𝑘⟨𝑔⟩ ⟹ 𝑥𝑘 ∈ ⟨𝑔⟩

There are two possibilities for the value of 𝑥𝑘. One is that 𝑥𝑘 = 1 ∈ ⟨𝑔⟩ and the other is 𝑥𝑘𝑝 = 1 ∈ ⟨𝑔⟩ for
𝑥𝑘 ≠ 1. If it is the later, we are done since |𝑥| = 𝑘𝑝 = 𝑚, which shows that there is a subgroup of order 𝑚. If



it is the former then we have that ⟨𝑥⟩ ∩ ⟨𝑔⟩ = 1, since the order of 𝑔 is prime. Therefore,

|⟨𝑥⟩⟨𝑔⟩| = |⟨𝑥⟩||⟨𝑔⟩|
|⟨𝑥⟩ ∩ ⟨𝑔⟩| = 𝑘𝑝

1 = 𝑘𝑝 = 𝑚

Thus, ⟨𝑥, 𝑔⟩ = ⟨𝑥⟩⟨𝑔⟩ is a subgroup of 𝐺 of order 𝑚.

5. Prove that subgroups and quotient groups of a solvable group are solvable.

Proof. A group 𝐺 is solvable if there is a chain of subgroups

1 = 𝐺0 ⊴ 𝐺1 ⊴ 𝐺2 ⊴ ⋯ ⊴ 𝐺𝑠 = 𝐺

such that 𝐺𝑖+1/𝐺𝑖 is abelian for 𝑖 = 0, 1, … , 𝑠 − 1.

For 𝑁 ≤ 𝐺 let 𝑁𝑖 = 𝐺𝑖 ∩ 𝑁. Since 𝐺𝑖 ⊴ 𝐺𝑖+1 we see that for 𝑥 ∈ 𝑁𝑖 and 𝑦 ∈ 𝑁𝑖+1 we have 𝑦𝑥𝑦−1 ∈ 𝑁. We
also have 𝑦𝑥𝑦−1 ∈ 𝐺𝑖 since 𝐺𝑖 ⊴ 𝐺𝑖+1. Therefore, 𝑦𝑥𝑦−1 ∈ 𝐺𝑖 ∩ 𝑁 = 𝑁𝑖. Thus, 𝑁𝑖 ⊴ 𝑁𝑖+1 and therefore we
have a chain of subgroups

1 = 𝑁0 ⊴ 𝑁1 ⊴ ⋯ ⊴ 𝑁𝑠 = 𝑁
Now we need to show that 𝑁𝑖+1/𝑁𝑖 is abelian. Note that

𝑁𝑖 = 𝐺𝑖 ∩ 𝑁 = 𝐺𝑖 ∩ (𝐺𝑖+1 ∩ 𝑁) = 𝐺𝑖 ∩ 𝑁𝑖+1.

and then by the Second Isomorphism Theorem we have that

𝑁𝑖+1
𝑁𝑖

= 𝑁𝑖+1
𝐺𝑖 ∩ 𝑁𝑖+1

≅ 𝐺𝑖𝑁𝑖+1
𝐺𝑖

≤ 𝐺𝑖 + 1
𝐺𝑖

since 𝐺𝑖 and 𝑁𝑖+1 are both subgroups of 𝐺𝑖+1. Therefore, since 𝐺𝑖+1/𝐺𝑖 is abelian, all of its subgroups are as
well so we see that 𝑁𝑖+1/𝑁𝑖 is abelian. Therefore, subgroups of a solvable group are solvable.

Let 𝑁 be a normal subgroup of 𝐺 so that 𝐺/𝑁 is a quotient group. Then we have the chain of subgroups

1 ⊴ 𝑁 ⊴ 𝐺

But we know that 𝐺 is solvable so we know that we also have the chain of subgroups

1 = 𝐺0 ⊴ 𝐺1 ⊴ 𝐺2 ⊴ ⋯ ⊴ 𝐺𝑠 = 𝐺

therefore 𝑁 must be one of these subgroups. Let 𝑁 = 𝐺𝑘. Then, since 𝑁 is normal we know that 𝐺/𝑁 is a
quotient group and from the Fourth Isomorphism Theorem we know that there is a bijection from the set
of subgroups 𝐴 of 𝐺 which contain 𝑁 onto the set of subgroups 𝐴 = 𝐴/𝑁 of 𝐺/𝑁. Therefore, we know that
we will have the chain of subgroups

1 = 𝐺𝑘/𝑁 ⊴ 𝐺𝑘+1/𝑁 ⊴ ⋯ ⊴ 𝐺𝑠/𝑁 = 𝐺/𝑁

Furthermore, from the Third Isomorphism Theorem we have that

𝐺𝑖+1/𝑁
𝐺𝑖/𝑁 ≅ 𝐺𝑖+1

𝐺𝑖
for all k ≤ 𝑖 ≤ 𝑠

so that each factor of this chain of subgroups is also abelian. Therefore, quotient groups of a solvable group
are solvable.

6. Prove part (1) of the Jordan-Hölder Theorem by induction on |𝐺|.

Part (1) of the Jordan-Hölder Theorem states that for a finite group 𝐺 with 𝐺 ≠ 1 that



𝐺 has a composition series.

A composition series is a sequence of subgroups in 𝐺 such that

1 = 𝑁0 ≤ 𝑁1 ≤ 𝑁2 ≤ ⋯ ≤ 𝑁𝑘−1 ≤ 𝑁𝑘 = 𝐺

where 𝑁𝑖 ⊴ 𝑁𝑖+1 and 𝑁𝑖+1/𝑁𝑖 a simple group for 0 ≤ 𝑖 ≤ 𝑘 − 1.

Proof. Since 𝐺 ≠ 1 then |𝐺| > 1.

base case: |𝐺| = 2. Any group of order 2 has the composition series

1 = 1 ⊴ 𝐺 = 𝐺

induction hypothesis: Suppose 𝐺, with |𝐺| < 𝑛, has a composition series.

induction step: Let |𝐺| = 𝑛. Then 𝐺 is either simple or it is not. If 𝐺 is simple, then from the same argument
as the base case we see that it has a composition series. If 𝐺 is not simple then it has a normal subgroup
other than 1 and 𝐺, say 𝑁. Then 𝐺/𝑁 is a quotient group and since its order is less than 𝑛, by the induction
hypothesis, it has a composition series

1 = 𝐺0 ≤ 𝐺1 ≤ ⋯ ≤ 𝐺𝑠 = 𝐺

From the Fourth Isomorphism Theorem we know that this composition series corresponds to

𝑁 = 𝐺0 ≤ 𝐺1 ≤ ⋯ ≤ 𝐺𝑠 = 𝐺

and also that 𝐺𝑖 ⊴ 𝐺𝑖+1 if and only if 𝐺𝑖 ⊴ 𝐺𝑖+1 so that by the Third Isomorphism Theorem we see that

𝐺𝑖+1

𝐺𝑖
≅ 𝐺𝑖+1

𝐺𝑖

So that the composition factors are simple. Thus, 𝑁 = 𝐺0 ≤ 𝐺1 ≤ ⋯ ≤ 𝐺𝑠 = 𝐺 is a composition series for 𝐺.

The order of 𝑁 is also less than the order of 𝐺 and it too, by the induction hypothesis, has a composition
series

1 = 𝑁0 ≤ 𝑁1 ≤ ⋯ ≤ 𝑁𝑘 = 𝑁
Putting these two composition series together we get the composition series for 𝐺

1 = 𝑁0 ≤ 𝑁1 ≤ ⋯ ≤ 𝑁 ≤ 𝐺1 ≤ ⋯ ≤ 𝐺𝑠 = 𝐺

Therefore, by induction, all finite groups have a composition series.

7. If 𝐺 is a finite group and 𝐻 ⊴ 𝐺 prove that there is a composition series of 𝐺, one of whose terms is 𝐻.

Proof. From the proof of Exercise 6 we can see that in the composition series for 𝐺 that the normal subgroup
𝑁 was one of the terms. In the same manner and derivation, we see that 𝐻 is a term in the composition
series of 𝐺.

8. Let 𝐺 be a finite group. Prove that the following are equivalent:

(i) 𝐺 is solvable.

(ii) 𝐺has a chain of subgroups: 1 = 𝐻0 ⊴ 𝐻1 ⊴ 𝐻2 ⊴ ⋯ ⊴ 𝐻𝑠 = 𝐺 such that𝐻𝑖+1/𝐻𝑖 is cyclic, 0 ≤ 𝑖 ≤ 𝑠 = 1.

(iii) all composition factors of 𝐺 are of prime order.



(iv) 𝐺 has a chain of subgroups: 1 = 𝑁0 ⊴ 𝑁1 ⊴ 𝑁2 ⊴ ⋯ ⊴ 𝑁𝑡 = 𝐺 such that each 𝑁𝑖 is a normal subgroup
of 𝐺 and 𝑁𝑖+1/𝑁𝑖 is abelian, 0 ≤ 𝑖 ≤ 𝑡 − 1.

[For (iv), prove that a minimal nontrivial normal subgroup 𝑀 of 𝐺 is necessarily abelian and then use
induction. To see that 𝑀 is abelian, let 𝑁 ⊴ 𝑀 be of prime index (by (iii)) and show that 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁 for
all 𝑥, 𝑦 ∈ 𝑀 (cf. Exercise 40, Section 1). Apply the same argument to 𝑔𝑁𝑔−1 to show that 𝑥−1𝑦−1𝑥𝑦 is in the
intersection of all 𝐺-conjugates of 𝑁, and use the minimality of 𝑀 to conclude that 𝑥−1𝑦−1𝑥𝑦 = 1.]

Proof.
(i) → (ii): If 𝐺 is solvable then there is a chain of subgroups

1 = 𝐺0 ⊴ 𝐺1 ⊴ 𝐺2 ⊴ ⋯ ⊴ 𝐺𝑠 = 𝐺

such that 𝐺𝑖+1/𝐺𝑖 is abelian for 𝑖 = 0, 1, … , 𝑠 − 1. Since 𝐺𝑖+1/𝐺𝑖 is abelian, we know that if its order can be
divided, that a subgroup exists. If its order cannot be divided then we know that the quotients 𝐺𝑖+1/𝐺𝑖 are
cyclic since they are of prime order [Corollary 10]. If it can be divided then we know that the quotients
𝐺𝑖+1/𝐺𝑖 have a normal subgroup, say 𝐻. Then we must have the series

1 ⊴ 𝐻 ⊴ 𝐺𝑖+1

and from the Fourth Isomorphism Theorem we know that there then exists the series

𝐺𝑖 ⊴ 𝐻 ⊴ 𝐺𝑖+1

Since 𝐺 is finite, this process can be repeated until 𝐺𝑖+1/𝐻𝑖 do not contain anymore subgroups for all of
𝐺𝑖+1/𝐺𝑖 in the series. Then, we will have a series such that all quotients are cyclic as desired.

(ii) → (iii): If 𝐺 has a chain of subgroups: 1 = 𝐻0 ⊴ 𝐻1 ⊴ 𝐻2 ⊴ ⋯ ⊴ 𝐻𝑠 = 𝐺 such that 𝐻𝑖+1/𝐻𝑖 is cyclic,
0 ≤ 𝑖 ≤ 𝑠 = 1, then all quotients are either of prime order or they aren’t. If they are, we are done. If not,
then for the quotients not of prime order, since the quotients are cyclic they are also abelian (since taking
powers of an element is commutative). From Exercise 4 we know that there exist subgroups for any divisor
of the quotients. Therefore in the same manner as (i) → (ii), using the Fourth Isomorphism Theorem, we
can construct a series were all the quotients are of prime order.

(iii) → (iv): If all composition factors of 𝐺 are of prime order then they must be cyclic [Corollary 10] and
therefore abelian (since taking powers of an element is commutative). Let 𝑁 ⊴ 𝑀 be of prime index, where
𝑀 is assumed to be a minimal nontrivial subgroup of 𝐺. Therefore, in the quotient group 𝑀/𝑁 we have

𝑥−1𝑦−1𝑥𝑦 = 𝑥−1𝑥𝑦−1𝑦 = 1 ⟺ 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑁

𝑔𝑁𝑔−1, for any 𝑔 ∈ 𝐺 is obviously a subgroup of 𝐺 but it is also a subgroup of 𝑀 since 𝑀 is normal (i.e.
𝑔𝑁𝑔−1 ⊆ 𝑀). We will show that it is is normal in 𝑀. For it to be normal in 𝑀, for 𝑛 ∈ 𝑁 and 𝑚 ∈ 𝑀, we
need to have

𝑚(𝑔𝑛𝑔−1)𝑚−1 ∈ 𝑔𝑁𝑔−1(𝑔−1𝑚𝑔)𝑛(𝑔−1𝑚−1𝑔) ∈ 𝑁
which we know is true since 𝑁 is normal in 𝑀. Thus, 𝑔𝑁𝑔−1 is a normal subgroup of 𝑀 and by the same
argument above, we see that for all 𝑔 ∈ 𝐺

𝑥−1𝑦−1𝑥𝑦 ∈ 𝑔𝑁𝑔−1

Which shows that 𝑥−1𝑦−1𝑥𝑦 is in the intersection of all 𝐺-conjugates of 𝑁. However

𝐼 = ⋂
𝑔∈𝐺

𝑔𝑁𝑔−1



is a normal subgroup of 𝐺 since if 𝑥 ∈ 𝐼 and 𝑔 ∈ 𝐺, then we must have that 𝑥 ∈ 𝑁 so that 𝑔𝑥𝑔−1 and it must
be the trivial subgroup because if it wasn’t this would contradict the minimality of 𝑀. Therefore, 𝐼 must be
the trivial subgroup and

𝑥−1𝑦−1𝑥𝑦 = 1 ∈ 𝐼
so that 𝑥𝑦 = 𝑦𝑥 for 𝑥, 𝑦 ∈ 𝑀. This shows that a minimal normal subgroup 𝑀 must be abelian (we could
have shown this with 𝑀/𝑁 ≅ 𝑀/1 ≅ 𝑀, since 𝑀 is minimal and 𝑁 ⊴ 𝑀 is of prime index, which shows
that 𝑀 is abelian since the composition factors of prime index are abelian).

Now that we have shown that 𝑀 is abelian, we will show by induction that there is a chain of normal
subgroups where the composition factors are abelian. Suppose that 𝑀1 is a the minimal normal subgroup
of 𝐺. Then we have the chain

1 ⊴ 𝑀1 ⊴ 𝐺
Using the same argument as above, we must have that there is a minimal nontrivial normal subgroup of
𝐺/𝑀1, say 𝑀2, which is also abelian. Then we have

1 ⊴ 𝑀2 ⊴ 𝐺 = 𝐺/𝑀1

By the Fourth Isomorphism Theorem, there then exists the series

𝑀1 ⊴ 𝑀2 ⊴ 𝐺

From the two series above we see that 𝑀2 = 𝑀2/𝑀1 is abelian and also that 𝑀2 is normal. Therefore, since
𝐺 is finite, we can continue this same process a finite number of steps, say 𝑛, to get the series

1 ⊴ 𝑀1 ⊴ 𝑀2 ⊴ ⋯ ⊴ 𝑀𝑛 = 𝐺

Which shows that was required.

(iv) → (i): This is the definition of a solvable group.

9. Prove the following special case of part (2) of the Jordan-Hölder Theorem: assume the finite group 𝐺 has
two composition series

1 = 𝑁0 ⊴ 𝑁1 ⊴ ⋯ ⊴ 𝑁𝑟 = 𝐺 and 1 = 𝑀0 ⊴ 𝑀1 ⊴ 𝑀2 = 𝐺.

Show that 𝑟 = 2 and that the list of composition factors is the same. [Use the Second IsomorphismTheorem.]

Proof. If 𝑀1 = 𝑁𝑟−1 then we see that the two composition series match up and we are done. Let’s assume
that 𝑀 ≠ 𝑁𝑟−1 and let 𝐻 = 𝑁𝑟−1 ∩ 𝑀. From the composition series we see that the composition factor
𝑀/1 ≅ 𝑀 is simple, so therefore 𝑀 does not have any nontrivial normal subgroups. It is easy to see that 𝐻
is normal in 𝑀 and therefore it must be trivial.

Then, by the Second Isomorphism Theorem we have that

𝑁𝑟−1
𝑁𝑟−1 ∩ 𝑀 ≅ 𝑁𝑟−1𝑀

𝑀
where the left hand side evaluates to 𝑁𝑟−1. Now, on the right hand side, we see that 𝑁𝑟−1𝑀 must be normal
as the join of two normal subgroups is normal. Also, since 𝑁𝑟−1 is nontrivial (from its composition series),
we see that 𝑁𝑟−1𝑀 is larger than 𝑀. Assume that 𝑁𝑟−1𝑀 ≠ 𝐺 so that

𝑀 ⊴ 𝑁𝑟−1𝑀 ⊴ 𝐺

and if we divide this out with 𝑀 we see that

1 ⊴ 𝑁𝑟−𝑀 ⊴ 𝐺 = 𝐺/𝑀



However, we know that𝐺/𝑀 is simple as it is a composition factor and therefore it doesn’t have anynontrivial
normal subgroups. Therefore, we have a contradiction. Therefore, we must have that 𝑁𝑟−1𝑀 = 𝐺 so that
we have

𝑁𝑟−1 ≅ 𝑁𝑟−1𝑀
𝑀 ≅ 𝐺/𝑀

which we know doesn’t have any nontrivial normal subgroups. Therefore, we must have that 𝑟 = 2. The
composition factors for 𝑁𝑟−1 ≠ 𝑀 between the two composition series are 𝐺/𝑁𝑟−1 ≅ 𝑀 and 𝑁𝑟−1/1 ≅
𝐺/𝑀.

10. Prove part (2) of the Jordan-Hölder Theorem by induction onmin{𝑟, 𝑠}. [Apply the inductive hypothesis
to 𝐻 = 𝑁𝑟−1 ∩ 𝑀𝑠−1 and use the preceding exercises.]

Proof. Let 𝐺 be a finite group with 𝐺 ≠ 1.

base case: From Exercise 9 we have already proven part (2) of the Jordan-Hölder Theorem for min{𝑟, 𝑠} = 2.

induction hypothesis: Suppose part (2) of the Jordan-Hölder Theorem holds for 𝑛 < min{𝑟, 𝑠}.

induction step: Let 𝐻 = 𝑁𝑟−1 ∩ 𝑀𝑠−1, and two composition series for 𝐺:

1 = 𝑁0 ⊴ 𝑁1 ⊴ ⋯ ⊴ 𝑁𝑟 = 𝐺1 = 𝑀0 ⊴ 𝑀1 ⊴ ⋯ ⊴ 𝑀𝑠 = 𝐺

The composition series for 𝐺 contain sub-composition series for 𝑁𝑟−1 and 𝑀𝑠−1 from the induction hypoth-
esis. If we have 𝐻 = 𝑁𝑟−1 = 𝑀𝑠−1 then by the induction hypothesis we must have that

1 = 𝑁0 ⊴ 𝑁1 ⊴ ⋯ ⊴ 𝑁𝑟−11 = 𝑀0 ⊴ 𝑀1 ⊴ ⋯ ⊴ 𝑀𝑠−1

are both of the same length, which shows that 𝑟 = 𝑠 and the composition factors for 𝐺 are the composition
factors in the series plus 𝐺/𝑁𝑟−1 ≅ 𝐺/𝑀𝑠−1. On the other hand, if 𝑁𝑟−1 ≠ 𝑀𝑠−1 then similar to the argument
used in the proof of Exercise 9 we must have that 𝑁𝑟−1𝑀𝑠−1 is normal and larger than 𝑀𝑠−1 as 𝑁𝑟−1 can’t be
trivial as it is part of the composition series. Then we must have a chain

𝑀𝑠−1 ⊴ 𝑁𝑟−1𝑀𝑠−1 ⊴ 𝐺

which we can divide by 𝑀𝑠−1 to get the chain

1 ⊴ 𝑁𝑟−1𝑀𝑠−1 ⊴ 𝐺 = 𝐺/𝑀𝑠−1

which is a contradiction since 𝐺/𝑀𝑠−1 is a composition factor of the series and must therefore be simple.
Thus, we must have that 𝑁𝑟−1 = 𝑀𝑠−1 showing that 𝑟 = 𝑠 and that the two composition series are equivalent
with composition factors 𝐺/𝑁𝑟−1 ≅ 𝐺/𝑀𝑠−1.

11. Prove that if𝐻 is a nontrivial normal subgroupof the solvable group𝐺 then there is a nontrivial subgroup
𝐴 of 𝐻 with 𝐴 ⊴ 𝐺 and 𝐴 abelian.

Proof. Since 𝐻 ⊴ 𝐺 and 𝐺 is solvable we must have that 𝐺/𝑁 is abelian. Therefore for 𝑥, 𝑦 ∈ 𝐺 we have that

(𝑥𝐻)(𝑦𝐻) = (𝑦𝐻)(𝑥𝐻)
⟺ [𝑥𝐻, 𝑦𝐻] = 𝐻

⟺ [𝑥, 𝑦]𝐻 = 𝐻
⟺ [𝑥, 𝑦] ∈ 𝐻

which shows that 𝐴 ≤ 𝐻 is the commutator subgroup of 𝐺. It was proved in Exercise 41, Section 3.1 that this
group is a normal subgroup of 𝐺. For 𝑥, 𝑦 ∈ 𝐺 we have

(𝑥𝐻)(𝑦𝐻) = (𝑦𝐻)(𝑥𝐻) [𝐺/𝐻 is abelian]



⟺ 𝑥𝑦𝐻 = 𝑦𝑥𝐻 [𝐻 is normal]
⟺ 𝑥𝑦 = 𝑦𝑥 ∈ 𝐻

and therefore for [𝑥1, 𝑦1], [𝑥2, 𝑦2] ∈ 𝐻 we have

([𝑥1, 𝑦1]𝐻)([𝑥2, 𝑦2]𝐻) = ([𝑥2, 𝑦2]𝐻)([𝑥1, 𝑦1]𝐻) [𝐺/𝐻 is abelian]
⟺ [𝑥1, 𝑦1][𝑥2, 𝑦2] = [𝑥2, 𝑦2][𝑥1, 𝑦1]

showing that 𝐴 is abelian.

12. Prove (without using the Feit-Thompson Theorem) that the following are equivalent:

(i) every group of odd order is solvable

(ii) the only simple groups of odd order are those of prime order.

Proof.
(i) → (ii): If every group of odd order is solvable then let 𝐺 be of odd order and simple. Then, since 𝐺 is
simple we have the chain

1 ⊴ 𝐺
which shows that the quotient group 𝐺/1 ≅ 𝐺 must be abelian. Yet, all subgroups of an abelian group are
normal so this shows that the only subgroups of 𝐺 are 1 and 𝐺. Therefore, by Lagrange’s Theoremwe know
that the group must be of prime order.

(ii) → (i): If the only simple groups of odd order are those of prime order then let 𝐺 be a simple group of
odd and prime order. Then, since 𝐺 is simple and of odd and prime order we see from Lagrange’s Theorem
that its only subgroups are the 1 and 𝐺 itself so that we have the chain

1 ⊴ 𝐺

Additionally, we know that since 𝐺 is of prime order that 𝐺 is cyclic and 𝐺 ≅ 𝑍𝑝 [Corollary 10]. Thus, 𝐺
must be abelian since taking powers of an element is commutative. Hence, 𝐺 ≅ 𝐺/1 is also abelian, showing
that 𝐺 and thus every group of odd order is solvable.

3.5 TRANSPOSITIONS AND THE ALTERNATING GROUP

1. In Exercises 1 and 2 of Section 1.3 you were asked to find the cycle decomposition of some permuta-
tions. Write each of these permutations as a product of transpositions. Determine which of these is an even
permutation and which is an odd permutation.

Proof.
Exercise 1:

𝜎 = (1 3 5)(2 4) ⟹ (2 4)(1 5)(1 3), 𝜖(𝜎) = −1
𝜏 = (1 5)(2 3) ⟹ already a product of transpositions, 𝜖(𝜏) = 1

𝜎2 = (1 5 3) ⟹ (1 3)(1 5), 𝜖(𝜎2) = 1
𝜎𝜏 = (2 5 3 4) ⟹ (2 4)(2 3)(2 5), 𝜖(𝜎𝜏) = −1
𝜏𝜎 = (1 2 4 3) ⟹ (1 3)(1 4)(1 2), 𝜖(𝜏𝜎) = −1

𝜏2𝜎 = (1 3 5)(2 4) ⟹ (2 4)(1 5)(1 3), 𝜖(𝜏2𝜎) = −1



Exercise 2:

𝜎 = (1 13 5 10)(3 15 8)(4 14 11 7 12 9) ⟹ (1 10)(1 5)(1 13)(3 8)(3 15)(4 9)(4 12)(4 7)(4 11)(4 14), 𝜖(𝜎) = 1
𝜏 = (1 14)(2 9 15 13 4)(3 10)(5 12 7)(8 11) ⟹ (1 14)(2 4)(2 13)(2 15)(2 9)(3 10)(5 7)(5 12)(8 11), 𝜖(𝜏) = −1

𝜎2 = (1 5)(3 8 15)(4 11 12)(7 9 14)(10 13) ⟹ (1 5)(3 15)(3 8)(4 12)(4 11)(7 14)(7 9)(10 13), 𝜖(𝜎2) = 1
𝜎𝜏 = (1 11 3)(2 4)(5 9 8 7 10 15)(13 14) ⟹ (1 3)(1 11)(2 4)(5 15)(5 10)(5 7)(5 8)(5 9)(13 14), 𝜖(𝜎𝜏) = −1
𝜏𝜎 = (1 4)(2 9)(3 13 12 15 11 5)(8 10 14) ⟹ (1 4)(2 9)(3 5)(3 11)(3 15)(3 12)(3 13)(8 14)(8 10), 𝜖(𝜏𝜎) = −1

𝜏2𝜎 = (1 2 15 8 3 4 14 11 12 13 7 5 10) ⟹
(1 10)(1 5)(1 7)(1 13)(1 12)(1 11)(1 14)(1 4)(1 3)(1 8)(1 15)(1 2), 𝜖(𝜏2𝜎) = 1

2. Prove that 𝜎2 is an even permutation for every permutation 𝜎 .

Proof. 𝜖 ∶ 𝑆𝑛 → {±1} is a homomorphism. Therefore, for any permutation 𝜎 we have that

𝜖(𝜎2) = 𝜖(𝜎 ⋅ 𝜎)
= 𝜖(𝜎)𝜖(𝜎)
= (±1)(±1) = 1

3. Prove that 𝑆𝑛 is generated by {(𝑖 𝑖 + 1) ∣ 1 ≤ 𝑖 ≤ 𝑛 − 1}. [Consider conjugates, viz. (2 3)(1 2)(2 3)−1.]

Proof. The text shows that 𝑆𝑛 is generated from its transpositions, 𝑆𝑛 = ⟨(𝑖 𝑗) ∣ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛⟩. Here we will
prove that 𝑆𝑛 is generated from the 𝑛 − 1 transpositions

(1 2), (2 3), … , (𝑛 − 1 𝑛)

by showing that they produce each transposition (𝑎 𝑏) in 𝑆𝑛. Since (𝑎 𝑏) = (𝑏 𝑎), without loss of generality
let 𝑎 < 𝑏. We will show with induction on 𝑏 − 𝑎 that (𝑎 𝑏) is a product of transpositions (𝑖 𝑖 + 1).

base case: For 𝑏 − 𝑎 = 1 we see that
(𝑎 𝑏) = (𝑎 𝑎 + 1)

is one of the transpositions of the generating set so it is trivially included.

induction hypothesis: Suppose (1 2), (2 3), … , (𝑛−1 𝑛) is a generating set for transpositionswith a difference
up to, 𝑏 − 𝑎 = 𝑘 − 2 > 1.

induction step: Now we will show that (1 2), (2 3), … , (𝑛 − 1 𝑛) is a generating set for all of 𝑆𝑛 by showing
that it generates all transpositions {(𝑖 𝑗) ∣ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}. The base case and induction hypothesis take care
of all transpositions up to a difference of 𝑘 − 2. With conjugation we have:

(𝑎 𝑏) = (𝑎 𝑎 + 1)(𝑎 + 1 𝑏)(𝑎 𝑎 + 1)−1 (1)

and in order to generate all of 𝑆𝑛 we need that 𝑏 − 𝑎 = 𝑘 − 1. Suppose that 𝑏 − 𝑎 = 𝑘 − 1. The first and third
transpositions on the right hand side of (1) are handled by the base case. The middle transposition on the
right hand side of (1) has a difference of

𝑏 − (𝑎 + 1) = 𝑏 − 𝑎 − 1 = 𝑘 − 1 − 1 = 𝑘 − 2

and is handled by the induction hypothesis.

Therefore, 𝑆𝑛 is generated by {(𝑖 𝑖 + 1) ∣ 1 ≤ 𝑖 ≤ 𝑛 − 1}.



4. Show that 𝑆𝑛 = ⟨(1 2), (1 2 3 … 𝑛)⟩ for all 𝑛 > 2.

Proof. From Exercise 3, it suffices to show that ⟨(1 2), (1 2 3 … 𝑛)⟩, for all 𝑛 > 2, will produce {(𝑖 𝑖 + 1) ∣ 1 ≤
𝑖 ≤ 𝑛 − 1}. Let 𝜎 ∈ 𝑆𝑛 and note that for an 𝑛-cycle, say (1 2 3 … 𝑛) we have that

𝜎(1 2 3 … 𝑛)𝜎−1

If we let 𝜎(𝑥) represent the number that is to the right of 𝑥 in the permutation 𝜎 then 𝑥 will be the number to
the left of the number 𝜎(𝑥) in the permutation 𝜎−1 since 𝜎−1 cycles in the opposite direction as 𝜎 . Looking
at the cycle decomposition above, let us see how the numbers are permuted. Starting on the right, choose
a number in 𝜎−1, say 𝜎(𝑥). This will then point to the left, which by our convention would be, at 𝑥. Then,
the next step is to go to the 𝑛-cycle to the left and starting at 𝑥, we see that this would point to the right at
𝑥 + 1 (unless 𝑥 = 𝑛, in which case this would point to 1). The next step is to then go this number in the
permutation 𝜎 and then this would point to 𝜎(𝑥 + 1), to the right of 𝑥 + 1. Therefore, we would have that
the above cycle decomposition is equal to the

𝜎(1 2 3 … 𝑛)𝜎−1 = (𝜎(1) 𝜎(2) … 𝜎(𝑛))

With this in mind, now let’s take a look at the conjugation of the generators

(1 2 3 … 𝑛)(1 2)(1 2 3 … 𝑛)−1 = (𝜎(1) 𝜎(2)) = (2 3)

and continuing in this fashion we can see that we can generate the rest of {(𝑖 𝑖 + 1) ∣ 1 ≤ 𝑖 ≤ 𝑛 − 1} with

(1 2 3 … 𝑛)𝑘(1 2)(1 2 3 … 𝑛)−𝑘 = (𝜎𝑘(1) 𝜎𝑘(2)) = (𝑘 + 1 𝑘 + 2)

which we can see is true for all 𝑛 > 2.

Therefore, 𝑆𝑛 = ⟨(1 2), (1 2 3 … 𝑛)⟩ for all 𝑛 > 2.

5. Show that if 𝑝 is prime, 𝑆𝑝 = ⟨𝜎, 𝜏⟩ where 𝜎 is any transposition and 𝜏 is any 𝑝-cycle.

Proof. Let us denote the transposition as 𝜎 = (𝑎 𝑏), with 1 ≤ 𝑎 < 𝑏 ≤ 𝑝. If 𝑏 − 𝑎 = 1 then from Exercise 4,
with a relabeling of the 𝑛 elements to coincide with 𝑎 and 𝑏 we would have

𝑆𝑝 = ⟨(𝑎 𝑏), (𝑎 𝑏 … )⟩

If 𝑏 − 𝑎 > 1 let 𝜏 = (1 2 3 … 𝑝) and note that the powers of 𝜏 give

𝜏 = (1 2 … 𝑝)
𝜏2 = (1 3 … 𝑝 − 1)
𝜏3 = (1 4 … 𝑝 − 2)

…
𝜏𝑝−1 = (1 𝑝 … 2)

𝜏𝑝 = 1

What this shows that there exists a 𝑝-cycle that will have a difference of 𝑏 and 𝑎 amongst its entries. Note that
we would not have a 𝑝-cycle for every power of 𝜏 if 𝑝 were not prime (for example (1 2 3 4)2 = (1 3)(2 4)).
Therefore, relabeling the power of 𝜏 so that it is the 𝑝-cycle that coincides with 𝑎 and 𝑏 we have

𝑆𝑝 = ⟨(𝑎 𝑏), (𝑎 𝑏 … )⟩

Therefore, if 𝑝 is prime, 𝑆𝑝 = ⟨𝜎, 𝜏⟩ where 𝜎 is any transposition and 𝜏 is any 𝑝-cycle.

6. Show that ⟨(1 3), (1 2 3 4)⟩ is a proper subgroup of 𝑆4. What is the isomorphism type of this subgroup?



Proof. From the previous exercises, we know that in order to generate all of 𝑆4 we need to be be able to
produce all transpositions that differ by 1. Therefore, in order to be able to generate all of 𝑆4 with the
transposition of (1 3) we would need a power of (1 2 3 4) to sequentially have a difference of 2 between each
number of the cycle. However, if we let 𝜎 = (1 2 3 4) we see that this is impossible as its powers are

𝜎 = (1 2 3 4)
𝜎2 = (1 3)(2 4)
𝜎3 = (1 4 3 2)
𝜎4 = 1

Therefore, ⟨(1 3), (1 2 3 4)⟩ must be a proper subgroup of 𝑆4. ⟨(1 3), (1 2 3 4)⟩ ≅ 𝐷8 since (1 3) has order 2
and (1 2 3 4) has order 4, similar to 𝑠 and 𝑟 respectively.

7. Prove that the group of rigid motions of a tetrahedron is isomorphic to 𝐴4. [Recall Exercise 20 in Section
1.7.]

Proof. From Exercise 20 in Section 1.7 we saw that the group of rigid motions of a tetrahedron are the per-
mutations

{1, (123), (132), (234), (243), (134), (143), (124), (142), (14)(23), (13)(24), (12)(34)}

and that they were a subgroup of 𝑆4. For this to be isomorphic to 𝐴4 we need that each of these 12 permu-
tations are even. Thus, we need that 𝜖(𝜎) = 1, which the identity permutation obviously maps to 1. For the
other permutations, note that an 𝑚-cycle is an odd permutation if and only if 𝑚 is even and that 𝜖(𝜎) = 1 if
𝜎 is a product of an even number of transpositions, which shows that these are all even permutations.

Therefore, the group of rigid motions of a tetrahedron is isomorphic to 𝐴4.

8. Prove the lattice of subgroups of 𝐴4 given in the text is correct. [By the preceding exercise and the
comments following Lagrange’s Theorem, 𝐴4 has no subgroup of order 6.]

Proof. From Exercise 7 we can see that all of the permutations of 𝐴4 are accounted for in graph. In the graph
we can also see that the edges for the 3-cycles between 1 and 𝐴4 are correct since the order of the 3-cycles is
3 and |𝐴4| = 12. For ⟨(1 2)(3 4)⟩, ⟨(1 3)(2 4)⟩, ⟨(1 4)(2 3)⟩ it is easy to verity they each have order two. For
⟨(1 2)(3 4), (1 3)(2 4)⟩ we see that (1 2)(3 4)(1 3)(2 4) = (1 4)(2 3) so |⟨(1 2)(3 4), (1 3)(2 4)⟩| = 4 and all
edges between subgroups is correct.

Thereofore, the lattice of subgroups of 𝐴4 given in the text is correct.

9. Prove that the (unique) subgroup of order 4 in 𝐴4 is normal and is isomorphic to 𝑉4.

Proof. Let the unique subgroup of order 4 in 𝐴4, ⟨(1 2)(3 4), (1 3)(2 4)⟩, be denoted by 𝐻. To show that 𝐻 is
a normal subgroup of 𝐴4 first note that since:

𝐻 ≤ 𝑁𝐺(𝐻) ≤ 𝐴4

by Lagrange’s Theorem we must have that 𝑁𝐺(𝐻) is of order 4, 6, or 12. To do this, we can see if any of the
generators from the subgroups of order 3 normalize it (no need to check the subgroups of order 2 as they
are already subgroups of this group).

(1 2 3)(1 2)(3 4)(1 2 3)−1 = (1 4)(2 3)



(1 2 4)(1 2)(3 4)(1 2 4)−1 = (1 3)(2 4)
(1 3 4)(1 2)(3 4)(1 3 4)−1 = (1 4)(2 3)

Therefore, ⟨(1 2)(3 4), (1 3)(2 4)⟩ is normal in 𝐴4. The only reason we needed to check for three conjugate
elements is that this would make 𝑁𝐺(𝐻) have at least 7 elements so we know it therefore must be equal to
all of 𝐴4. In particular, this group is isomorphic to 𝑉4 since its a group of order 4 and each of its nontrivial
elements have order 2.

10. Find a components series for 𝐴4. Deduce that 𝐴4 is solvable.

Proof. From Exercise 9 we see that ⟨(1 2)(3 4), (1 3)(2 4)⟩ is normal in 𝐴4 with order 4. Let us denote this
subgroup as 𝑁. We see that the component series

1 ⊴ 𝑁 ⊴ 𝐴4

has composition factors 𝐴4/𝑁 and 𝑁/1 ≅ 𝑁. The former has prime order and is isomorphic to 𝑍3, which is
abelan. The latter is isomorphic to 𝑉4, as we saw in Exercise 9, which is also abelian.

Therefore, 𝐴4 is solvable.

11. Prove that 𝑆4 has no subgroup isomorphic to 𝑄8.

Proof. 𝑄8 has 3 cyclic subgroups of order 4. In Exercise 4 of section 1.3 we saw that 𝑆4 has 6 4-cycles and all
6 of these 4-cycles are generated by the 3 subgroups of 𝑄8. Therefore, if 𝑄8 was a subgroup of 𝑆4 it would
need to contain all of these permutations. However, the square of a 4-cycle is a double transposition and this
two would need to be part of the group (closure under multiplication). This means 𝑄8 would also need to
contain 𝑉4 as we saw from Exercise 10 that it was generated from two double transpositions. This would be
an additional 4 permutations to the previous 6 which is 10 and therefore more than the 8 elements of 𝑄8.

Therefore, 𝑆4 has no subgroup isomorphic to 𝑄8.

12. Prove that 𝐴𝑛 contains a subgroup isomorphic to 𝑆𝑛−2 for each 𝑛 ≥ 3.

Proof. Let 𝜎 be a permutation of 𝐴𝑛 such that the last two elements of 𝐴𝑛 are fixed. Then 𝜎 ∈ 𝐴𝑛−2. Let 𝐻
be the subgroup of 𝐴𝑛 such that it is generated by the permutations of 𝐴𝑛−2 and the transposition (𝑛 − 1 𝑛).
That is, 𝐻 = ⟨𝐴𝑛−2, (𝑛 − 1 𝑛)⟩. In other words, 𝐻 is the subgroup generated by all even permutations on the
first 𝑛 − 2 elements and a transposition of the last two elements. The transposition (𝑛 − 1 𝑛) will commute
with all the elements of 𝐴𝑛−2. Therefore we have that:

|𝐻| = 2 ⋅ |𝐴𝑛−2| = |𝑆𝑛−2|

Now we will show that this group is isomorphic to 𝑆𝑛−2. Let 𝜑 be the map:

𝜑 ∶ 𝑆𝑛−2 → 𝐻, 𝜑(𝜎) =
⎧{
⎨{⎩

𝜎, 𝜎 is even
𝜎(𝑛 − 1 𝑛), 𝜎 is odd

If 𝜎1 and 𝜎2 are both even or odd we have:

𝜑(𝜎1𝜎2) = 𝜎1𝜎2
= 𝜑(𝜎1)𝜑(𝜎2)



Whereas if one is odd and the other even, with say 𝜎1 even and 𝜎2 being odd, we have:

𝜑(𝜎1𝜎2) = 𝜎1𝜎2(𝑛 − 1 𝑛)
= 𝜑(𝜎1)𝜑(𝜎2)

Since the transposition (𝑛 − 1 𝑛) commutes with 𝜎 we still get the above if 𝜎1 is odd and 𝜎2 is even. Thus,
𝜑 is a homomorphism. To see that 𝜑 is an isomorphism, we see that 𝜑 is one-to-one as it maps each unique
𝜎 ∈ 𝑆𝑛−2 to a unique 𝜎 ∈ 𝐻 and that 𝜑 is surjective as it is onto all of 𝐻 as 𝐻 = ⟨𝐴𝑛−2, (𝑛 − 1 𝑛)⟩.

Therefore 𝑆𝑛−2 ≅ 𝐻, where 𝐻 is a subgroup of 𝐴𝑛 showing that 𝐴𝑛 contains a subgroup isomorphic to 𝑆𝑛−2
for each 𝑛 ≥ 3.

13. Prove that every element of order 2 in 𝐴𝑛 is the square of an element of order 4 in 𝑆𝑛. [An element of
order 2 in 𝐴𝑛 is a product of 2𝑘 commuting transpositions.]

Proof. Let 𝜎𝑎 be an element in 𝐴𝑛 of order 2 and 𝜎𝑠 be an element in 𝑆𝑛 of order 4. Then, since 𝜎2
𝑎 = 1 and

𝜎4
𝑠 = 1 we have that:

𝜎2
𝑎 = 𝜎4

𝑠
𝜎𝑎 = 𝜎2

𝑠 [take square root on both sides]

Therefore, every element of order 2 in 𝐴𝑛 is the square of an element of order 4 in 𝑆𝑛.

14. Prove that the subgroup of 𝐴4 generated by any element of order 2 and any element of order 3 is all of
𝐴4.

Proof. Let 𝐻 ≤ 𝐴4 and 𝐾 ≤ 𝐴4 such that |𝐻| = 2 and |𝐾| = 3. Since these finite cyclic subgroups are both of
prime order, by Lagrange’s Theorem they cannot be subgroups of one another and therefore |𝐻 ∩ 𝐾| = 1.
From the order formula we then see that |𝐻𝐾| = |𝐻| ̇|𝐾| = 6 and from the lattice of subgroups for 𝐴4 in the
text we can see that 𝐴4 does not have a subgroup of order 6.

Therefore ⟨𝐻, 𝐾⟩ = 𝐴4.

15. Prove that if 𝑥 and 𝑦 are distinct 3-cycles in 𝑆4 with 𝑥 ≠ 𝑦−1, then the subgroup of 𝑆4 generated by 𝑥 and
𝑦 is 𝐴4.

Proof. This can be proved via brute force by taking two 3-cycles in 𝑆4 that are distinct and not inverses of
one another and computing all the combinations to finally arrive at 𝐴4. However, a simpler way to prove
this is by noting that the lattice of 𝐴4 in the text does not contain any subgroups that are generated from two
distinct 3-cycles and therefore 𝑥 and 𝑦 must generate all of 𝐴4.

16. Let 𝑥 and 𝑦 be distinct 3-cycles in 𝑆5 with 𝑥 ≠ 𝑦−1.

(a) Prove that if 𝑥 and 𝑦 fix a common element of {1, … , 5}, then ⟨𝑥, 𝑦⟩ ≅ 𝐴4.

Proof. If 𝑥 and 𝑦 fix a common element of {1, … , 5}, then 𝑥 and 𝑦 will permute the same elements as
was shown in Exercise 15, up to a relabeling. Therefore, ⟨𝑥, 𝑦⟩ ≅ 𝐴4.

(b) Prove that if 𝑥 and 𝑦 do not fix a common element of {1, … , 5}, then ⟨𝑥, 𝑦⟩ ≅ 𝐴5.



Proof. If 𝑥 and 𝑦 do not fix a common element of {1, … , 5}, then 𝑥 and 𝑦 will also permute the element
that was fixed in part (a). Since there would be five extra permutations of this element we see that
5 ⋅ |𝐴4| = 5 ⋅ 12 = 60 = |𝐴5|. Therefore, ⟨𝑥, 𝑦⟩ = 𝐴5.

17. If 𝑥 and 𝑦 are 3-cycles in 𝑆𝑛, prove that ⟨𝑥, 𝑦⟩ is isomorphic to 𝑍3, 𝐴4, 𝐴5 or 𝑍3 × 𝑍3.

Proof. If 𝑥 = 𝑦−1 or 𝑥 = 𝑦, then ⟨𝑥, 𝑦⟩ = 𝑍3 since the generators share the same elements. If 𝑥 ≠ 𝑦−1,
then ⟨𝑥, 𝑦⟩ = 𝐴4 if the 3-cycles share two common elements, as seen in Exercise 15. If the 3-cycles only
share a single common element then ⟨𝑥, 𝑦⟩ = 𝐴5, as seen in Exercise 16. If the 3-cycles don’t share any
common elements then 𝑥 ∘ 𝑦 = 𝑥 ∘ 𝑦 whereas 𝑥 ∘ 𝑥 or 𝑦 ∘ 𝑦 will permute into other elements. Therefore,
⟨𝑥, 𝑦⟩ = 𝑍3 × 𝑍3 = {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑍3}.


