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Preliminaries

Exercises:

0.1 BASICS

In Exercises 1 to 4 letA be the set of 2x2 matrices with real number entries. Recall that matrix multiplication
is defined by

[(𝑎 𝑏
𝑐 𝑑) (𝑝 𝑞

𝑟 𝑠) = (𝑎𝑝 + 𝑏𝑟 𝑎𝑞 + 𝑏𝑠
𝑐𝑝 + 𝑑𝑟 𝑐𝑞 + 𝑑𝑠)]

Let
[𝑀 = (1 1

0 1)]

and let
B = {𝑋 ∈ A ∣ 𝑀𝑋 = 𝑋𝑀}.

1. Determine which of the following elements of A lie in B:

[(1 1
0 1) , (1 1

1 1) , (0 0
0 0) , (1 1

1 0) , (1 0
0 1) , (0 1

1 0)]

The elements of A ∈ B are:
[(1 1

0 1) , (0 0
0 0) , (1 0

0 1)]

2. Prove that if 𝑃, 𝑄 ∈ B, then 𝑃 + 𝑄 ∈ B (where + denotes the usual sum of two matrices).

Proof. If 𝑃, 𝑄 ∈ B, then 𝑀𝑃 = 𝑃𝑀 and 𝑀𝑄 = 𝑄𝑀 so that 𝑀𝑃 − 𝑃𝑀 = 0 and 𝑀𝑄 − 𝑄𝑀 = 0. Therefore,

𝑀𝑃 − 𝑃𝑀 = 𝑀𝑄 − 𝑄𝑀
⟹ 𝑀𝑃 + 𝑄𝑀 = 𝑀𝑄 + 𝑃𝑀
⟹ 𝑀(𝑃 + 𝑄) = (𝑃 + 𝑄)𝑀.

Thus, 𝑃 + 𝑄 ∈ B.

3. Prove that if 𝑃, 𝑄 ∈ B, then 𝑃 ⋅ 𝑄 ∈ B (where ⋅ denotes the usual product of two matrices).

Proof. If 𝑃, 𝑄 ∈ B, then 𝑀𝑃 = 𝑃𝑀 and 𝑀𝑄 = 𝑄𝑀 so that 𝑀𝑃 − 𝑃𝑀 = 0 and 𝑀𝑄 − 𝑄𝑀 = 0. Therefore,

(𝑀𝑃 − 𝑃𝑀) ⋅ (𝑀𝑄 − 𝑄𝑀) = 0
⟹ 2𝑀2(𝑃𝑄) = 2(𝑃𝑄)𝑀2

⟹ 𝑀2(𝑃𝑄) = (𝑃𝑄)𝑀2 [dividing out 2]

The matrix 𝑀 is invertible as the determinant, det(𝑀) = 1/(𝑎𝑑 − 𝑏𝑐) = 1/(1 − 0) = 1, is non-zero. Thus,
𝑀−1 = (1 −1

0 1 ) and we now have

𝑀−1𝑀2(𝑃𝑄) = (𝑃𝑄)𝑀2𝑀−1



⟹ 𝑀(𝑃𝑄) = (𝑃𝑄)𝑀

and therefore 𝑃 ⋅ 𝑄 ∈ B.

4. Find conditions on 𝑝, 𝑞, 𝑟, 𝑠 which determine precisely when (𝑝 𝑞
𝑟 𝑠) ∈ B.

The conditions are 𝑟 = 0 and 𝑝 = 𝑠. To find this, multiply both sides of (𝑝 𝑞
𝑟 𝑠) by 𝑀 and set the elements of

the resulting matrices equal and solve the equations.

5. Determine whether the following functions 𝑓 are well-defined:

(a) 𝑓 ∶ ℚ → ℤ defined by 𝑓 (𝑎/𝑏) = 𝑎. using 1
2 and 2

4 this function gives 1 and 2 respectively, which shows
that this function is not well-defined.

(b) 𝑓 ∶ ℚ → ℚ defined by 𝑓 (𝑎/𝑏) = 𝑎2/𝑏2. similarly, using 1
2 and 2

4 this function gives 12

22 = 1
4 and

22

42 = 4
16 = 1

4 respectively, which shows that this function is well-defined.

6. Determine whether the function 𝑓 ∶ ℝ+ → ℤ defined by mapping a real number 𝑟 to the first digit to the
right of the decimal point in a decimal expansion of 𝑟 is well-defined.

𝑓 is well-defined because every real number has a unique decimal expansion therefore if we choose the first
decimal digit to the right of the decimal point, it will be unique.

7. Let 𝑓 ∶ 𝐴 → 𝐵 be a surjective map of sets. Prove that the relation

𝑎 ∼ 𝑏 if and only if 𝑓 (𝑎) = 𝑓 (𝑏)

is an equivalence relation whose equivalence classes are the fibers of 𝑓 .

Proof. If 𝑓 (𝑎) = 𝑓 (𝑎), then 𝑎 ∼ 𝑎, thus ∼ is reflexive. If 𝑓 (𝑎) = 𝑓 (𝑏), then 𝑓 (𝑏) = 𝑓 (𝑎) so that 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑎.
Thus, ∼ is symmetric. Additionally, if 𝑓 (𝑎) = 𝑓 (𝑏) and 𝑓 (𝑏) = 𝑓 (𝑐), then 𝑓 (𝑎) = 𝑓 (𝑐) so we have that 𝑎 ∼ 𝑐 and
therefore ∼ is also transitive. Thus, ∼ is an equivalence relation as it is reflexive, symmetric, and transitive.

If 𝑎1, 𝑎2 ∈ 𝑓 −1(𝑏), then 𝑓 (𝑎1) = 𝑏 and 𝑓 (𝑎2) = 𝑏 so that 𝑓 (𝑎1) = 𝑓 (𝑎2) and therefore 𝑎1 ∼ 𝑎2. Thus, 𝑎1 and 𝑎2
are in the fiber of 𝑏 under 𝑓 . Therefore, the equivalence classes are the fibers of 𝑓 .

0.2 PROPERTIES OF THE INTEGERS

1. For each of the following pairs of integers 𝑎 and 𝑏, determine their greatest common divisor, their least
common multiple, and write their greatest common divisor in the form 𝑎𝑥 + 𝑏𝑦 for some integers 𝑥 and 𝑦.

Note: Writing the greatest common divisor in terms of integers 𝑥 and 𝑦 is known as Bézout’s identity – Let
𝑎 and 𝑏 be integers with greatest common divisor d. Then, there exist integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 𝑑. More
generally, the integers of the form 𝑎𝑥 + 𝑏𝑦 are exactly the multiples of 𝑑.

(a) 𝑎 = 20, 𝑏 = 13

(20, 13) = 1
lcm = 22 ⋅ 5 ⋅ 13 = 260



20(2) + 13(−3) = 1

(b) 𝑎 = 69, 𝑏 = 372

(69, 372) = 3
lcm = 22 ⋅ 3 ⋅ 23 ⋅ 31 = 8556

69(7) + 372(−5) = 3

(c) 𝑎 = 792, 𝑏 = 275

(792, 275) = 11
lcm = 23 ⋅ 32 ⋅ 52 ⋅ 11 = 19800

792(8) + 275(−23) = 11

(d) 𝑎 = 11391, 𝑏 = 5673

(11391, 5673) = 3
lcm = 3 ⋅ 31 ⋅ 61 ⋅ 3797 = 21540381

11391(−126) + 5673(253) = 3

(e) 𝑎 = 1761, 𝑏 = 1567

(1761, 1567) = 1
lcm = 3 ⋅ 587 ⋅ 1567 = 2759487

1761(−25) + 1567(28) = 1

(f) 𝑎 = 507885, 𝑏 = 60808

(507885, 60808) = 691
lcm = 23 ⋅ 3 ⋅ 5 ⋅ 72 ⋅ 11 ⋅ 691 = 44693880

507885(−17) + 60808(142) = 691

2. Prove that if the integer 𝑘 divides the integers 𝑎 and 𝑏 then 𝑘 divides 𝑎𝑠 + 𝑏𝑡 for every pair of integers 𝑠 and
𝑡.

Proof. If 𝑘 ∣ 𝑎 and 𝑘 ∣ 𝑏 then 𝑘 ∣ 𝑎𝑠 and 𝑘 ∣ 𝑏𝑡 for every pair of integers 𝑠 and 𝑡. Therefore, 𝑘 ∣ 𝑎𝑠 + 𝑏𝑡.

3. Prove that if 𝑛 is composite then there are integers 𝑎 and 𝑏 such that 𝑛 divides 𝑎𝑏 but 𝑛 does not divide
either 𝑎 or 𝑏.

Proof. If 𝑛 is composite then 𝑛 > 1 and 𝑛 is not prime. Therefore 𝑛 can be constructed frommultiple integers,
say 𝑎, 𝑏 so that 𝑛 = 𝑎𝑏. For example, the smallest composite number is 4, for which we can assign 𝑎 = 2 and
𝑏 = 2. It is easy to see that 4 ∣ 4 and 4 ∤ 2, so that 𝑛 ∣ 𝑎𝑏 but 𝑛 ∤ 𝑎 or 𝑛 ∤ 𝑏.

By the Fundamental Theorem of Arithmetic we know that each composite number has a unique prime factor-
ization so we can split up this prime factorization so that 𝑎 has some of the prime factors and 𝑏 has the
remaining. Therefore, we are always guaranteed to find an 𝑎 and 𝑏 such that 𝑛 = 𝑎𝑏, 𝑛 > 𝑎, 𝑛 > 𝑏 and 𝑛 ∤ 𝑎
and 𝑛 ∤ 𝑏.



4. Let 𝑎, 𝑏 and 𝑁 be fixed integers with 𝑎 and 𝑏 nonzero and let 𝑑 = (𝑎, 𝑏) be the greatest common divisor of
𝑎 and 𝑏. Suppose 𝑥𝑜 and 𝑦𝑜 are particular solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑁 (i.e. 𝑎𝑥𝑜 + 𝑏𝑦𝑜 = 𝑁). Prove for any integer
𝑡 that the integers

𝑥 = 𝑥𝑜 + 𝑏
𝑑𝑡 and 𝑦 = 𝑦𝑜 − 𝑎

𝑏𝑡

are also solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑁 (this is in fact the general solution).

Proof. The question doesn’t ask for the derivation of the above parametric equations, just the proof that they
are also solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑁.

Simply plugging 𝑥 = 𝑥𝑜 + 𝑏
𝑑𝑡 and 𝑦 = 𝑦𝑜 − 𝑎

𝑏𝑡 into 𝑎𝑥 + 𝑏𝑦 = 𝑁 gives us 𝑎(𝑥𝑜 + 𝑏
𝑑𝑡) + 𝑏(𝑦𝑜 − 𝑎

𝑑𝑡) = 𝑁 ⟹

𝑎𝑥𝑜 + 𝑎𝑏
𝑑 𝑡+𝑏𝑦𝑜 − 𝑏𝑎

𝑑 𝑡 = 𝑁. Since 𝑎, 𝑏 are integers they commute and 𝑎𝑏 = 𝑏𝑎 so we are left with 𝑎𝑥𝑜 +𝑏𝑦𝑜 = 𝑁,
which was given as a particular solution to 𝑎𝑥 + 𝑏𝑦 = 𝑁.

5. Determine the value 𝜑(𝑛) for each integer 𝑛 ≤ 30 where 𝜑 denotes the Euler 𝜑-function.

The text gave us up to 𝑛 = 6 in (10). Continuing we have

𝜑(7) = 6
𝜑(8) = 4
𝜑(9) = 6

𝜑(10) = 4
𝜑(11) = 10
𝜑(12) = 4
𝜑(13) = 12
𝜑(14) = 6
𝜑(15) = 8
𝜑(16) = 8
𝜑(17) = 16
𝜑(18) = 6
𝜑(19) = 18
𝜑(20) = 8
𝜑(21) = 12
𝜑(22) = 10
𝜑(23) = 22
𝜑(24) = 8
𝜑(25) = 20
𝜑(26) = 12
𝜑(27) = 18
𝜑(28) = 12
𝜑(29) = 28
𝜑(30) = 8

6. Prove the Well Ordering Property of ℤ by induction and prove the minimal element is unique.



Proof. The text states: (1) (Well Ordering of ℤ) If 𝐴 is any nonempty subset of ℤ+, there is some element
𝑚 ∈ 𝐴 such that 𝑚 ≤ 𝑎, for all 𝑎 ∈ 𝐴 (𝑚 is called a minimal element of A).

base case: For 𝑛 = 1 suppose we have a subset {𝑎} for 𝑎 ∈ ℤ+. Any singleton subset of ℤ+ meets theminimal
element criterion because 𝑎 ≤ 𝑎 and obviously this 𝑎 is unique as it is the only element in the subset.

induction hypothesis: For 𝑛 = 𝑘 assume a subset of ℤ+ with order 𝑘, where 𝑘 is an integer and 𝑘 > 1, meets
the minimal element criterion and that this minimal element is unique.

induction step: For 𝑛 = 𝑘 + 1 suppose that we have a subset 𝐴 of ℤ+ with order 𝑘 + 1, and let us partition it
into two other subsets 𝐵 and 𝐶 such that 𝐴 = 𝐵 ∪ 𝐶, where order of 𝐵 is 𝑘 and order of 𝐶 is 1. We know that
𝐵 has a minimal element that is unique (induction hypothesis), which we will denote as 𝑚. Additionally,
let us denote the element of the singleton set 𝐶 as 𝑐, which is trivially the minimal and unique element. 𝑐 is
either greater than or less than 𝑚 as they both are elements of 𝐴 and therefore must be distinct. If 𝑐 > 𝑚,
then 𝑚 is still the minimal and unique element of 𝐴. If 𝑐 < 𝑚, then 𝑐 is the newminimal and unique element
of 𝐴. Therefore, 𝐴 has a minimal element that is unique.

7. If 𝑝 is a prime prove that there do not exist nonzero integers 𝑎 and 𝑏 such that 𝑎2 = 𝑝𝑏2 (i.e.,√𝑝 is not a
rational number).

Proof. Suppose that 𝑝 is prime and that √𝑝 is a rational number. That is, √𝑝 = 𝑎
𝑏 , where 𝑎, 𝑏 are integers

without any common factors (i.e. in reduced form).

√𝑝 = 𝑎
𝑏 ⟹ 𝑝 = 𝑎2

𝑏2 ⟹ 𝑝𝑏2 = 𝑎2

which means that 𝑝 ∣ 𝑎 and therefore we can write 𝑎 as 𝑝𝑛, where 𝑛 ∈ ℤ+. Therefore, (𝑝𝑛)2 = 𝑝𝑏2 ⟹
𝑝𝑛2 = 𝑏2, which means that 𝑝|𝑏 but this is a contradiction because 𝑎 and 𝑏 were hypothesized to not have any
common factors. Thus, there do not exist nonzero integers 𝑎 and 𝑏 such that 𝑎2 = 𝑝𝑏2.

8. Let 𝑝 be a prime, 𝑛 ∈ ℤ+. Find a formula for the largest power of 𝑝which divides 𝑛! = 𝑛(𝑛−1)(𝑛−2) … 2⋅1
(it involves the greatest integer function).

Since 𝑝 is prime and 𝑝 < 𝑛, where 𝑛 ∈ ℤ+ it must show up as one of the factors of 𝑛! = 𝑛(𝑛−1)(𝑛−2) … 2⋅1,
therefore, we can re-write this as 𝑛! = 𝑝[𝑛(𝑛 − 1)(𝑛 − 2) … 2 ⋅ 1]. But we forgot to also factor out all the
multiples of 𝑝 up to or less than 𝑛 so the last expression would actually be something like 𝑛! = 𝑝(2 ⋅ 𝑝)(3 ⋅
𝑝) … [𝑛(𝑛 − 1)(𝑛 − 2) … 2 ⋅ 1] = 𝑝(𝑝)(𝑝) … [2 ⋅ 3 … 𝑛(𝑛 − 1)(𝑛 − 2) … 2 ⋅ 1]. We also need to continue this
process of pulling out factors that are higher powers of 𝑝 up to the point where 𝑝𝑖 is less than or equal to 𝑛.
The best way to see how many multiples of powers of 𝑝 are less than or equal to 𝑛 is by using the greatest
integer function or what is commonly known in computer science as the floor function. This function will
let us know how many factors of each powers of prime there are up to 𝑛.

For example, suppose 𝑝 = 2 and 𝑛 = 27:

⌊27
2 ⌋ = 13, ⌊27

22 ⌋ = 6, ⌊27
23 ⌋ = 3, ⌊27

24 ⌋ = 1 ⌊27
25 ⌋ = 0

Aswe can see, the reason that 25 gave us 0 is because 25 > 27. If we add up all these factors, this is the power
that 𝑝 divides 𝑛!. Therefore, a general formula for the largest power of 𝑝 which divides 𝑛! is:

∞
∑
𝑖=1

⌊ 𝑛
𝑝𝑖 ⌋

This formula is called Legendre’s formula.



9. Write a computer program to determine the greatest common divisor (𝑎, 𝑏) of two integers 𝑎 and 𝑏 and to
express (𝑎, 𝑏) in the form 𝑎𝑥 + 𝑏𝑦 for some integers 𝑥 and 𝑦.

Left to the reader.

10. Prove for any given positive integer 𝑁 there exist only finitely many integers 𝑛 with 𝜑(𝑛) = 𝑁 where 𝜑
denotes Euler’s 𝜑-function. Conclude in particular that 𝜑 tends to infinity as 𝑛 tends to infinity.

Proof. Suppose we are given a positive integer 𝑁 such that 𝜑(𝑛) = 𝑁.

Note that 𝑛 = 𝑝𝛼 ⋅ 𝑘 from some prime divisor 𝑝 of 𝑛, where 𝑘 ∈ ℤ+ and 𝑝𝛼 ∤ 𝑘. Therefore
𝜑(𝑛) = 𝑝𝛼−1(𝑝 − 1)𝜑(𝑘)

⟹ 𝜑(𝑛) ≥ 𝑝 − 1
and

𝜑(𝑛) > 𝑝𝛼−1

⟹ 𝑁 ≥ 𝑝 − 1 and 𝑁 > 𝑝𝛼−1

for any prime divisor of 𝑛. As 𝑛 grows there will be a point that these last inequalities will not hold because
𝑝 − 1 ≥ 𝑁 or 𝑝𝛼−1 > 𝑁. To demonstrate this, we can find an 𝑛 where all integers above this value would give
𝜑(𝑛) ≠ 𝑁.

Let’s look for a number 𝑛 that would satisfy this. Since 𝑛 = 𝑝𝛼 ⋅ 𝑘 let 𝑘 = 1 so that 𝑛 = 𝑝𝛼. Then, 𝜑(𝑛) =
𝜑(𝑝𝛼) ⟹ 𝑁 = 𝑝𝛼−1(𝑝 − 1) The smallest prime factor that an integer can have is 2. Therefore, let 𝑝 = 2 such
that 𝑁 = 2𝛼−1(2 − 1) = 2𝛼−1 ⟹ 2𝑁 = 2𝛼 ⟹ 𝛼 = log2(2𝑁). This gives us a lower bound for the value of
alpha needed.

Now we need to find the base 𝑝 of 𝑛 = 𝑝𝛼. We saw that 𝑁 = 𝑝𝛼−1(𝑝 − 1) and if 𝛼 = 1 we have 𝑁 = 𝑝 − 1 ⟹
𝑝 = 𝑁 + 1. Therefore, 𝑛 > (𝑁 + 1)log2(2𝑁) will give us an 𝑛 that will suffice. Thus, for any given positive
integer 𝑁 there exist only finitely many integers 𝑛 with 𝜑(𝑛) = 𝑁.

𝜑(𝑛) = 𝜑(𝑝𝛼1
1 )𝜑(𝑝𝛼2

2 ) … 𝜑(𝑝𝛼𝑠𝑠 )
= 𝑝𝛼1−1

1 (𝑝1 − 1)𝑝𝛼2−1
2 (𝑝2 − 1) … 𝑝𝛼𝑠−1(𝑝𝑠 − 1)

= 𝑝𝛼1
1 (1 − 1

𝑝1
) 𝑝𝛼2

2 (1 − 1
𝑝2

) … 𝑝𝛼𝑠 (1 − 1
𝑝𝑠

)

= 𝑝𝛼1
1 𝑝𝛼2

2 ⋅ ⋅ ⋅ 𝑝𝛼𝑠𝑠 (1 − 1
𝑝1

) (1 − 1
𝑝2

) ⋅ ⋅ ⋅ (1 − 1
𝑝𝑠

)

= 𝑛 (1 − 1
𝑝1

) (1 − 1
𝑝2

) ⋅ ⋅ ⋅ (1 − 1
𝑝𝑠

)

From this last equation it is easy to see that 𝜑 tends to infinity as 𝑛 tends to infinity.

11. Prove that if 𝑑 divides 𝑛 then 𝜑(𝑑) divides 𝜑(𝑛) where 𝜑 denotes Euler’s 𝜑-function.

Proof. If 𝑑 ∣ 𝑛 then 𝑛 = 𝑑𝑐 for some 𝑐 ∈ ℤ+. Therefore,
𝜑(𝑛) = 𝜑(𝑑𝑐) ⟹ 𝜑(𝑛) = 𝜑(𝑑)𝜑(𝑐) ⟹ 𝜑(𝑑) ∣ 𝜑(𝑛)



0.3 ℤ/𝑛ℤℤ/𝑛ℤℤ/𝑛ℤ: THE INTEGERS MODULO 𝑛𝑛𝑛

1. Write down explicitly all the elements in the residue classes of ℤ/18ℤ.

The residue classes of ℤ/18ℤ are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17} of which these elements
have the representatives:

0 = {0, 0 ± 18, 0 ± 36, … }
1 = {1, 1 ± 18, 1 ± 36, … }
2 = {2, 2 ± 18, 2 ± 36, … }
3 = {3, 3 ± 18, 3 ± 36, … }
4 = {4, 4 ± 18, 4 ± 36, … }
5 = {5, 5 ± 18, 5 ± 36, … }
6 = {6, 6 ± 18, 6 ± 36, … }
7 = {7, 7 ± 18, 7 ± 36, … }
8 = {8, 8 ± 18, 8 ± 36, … }
9 = {9, 9 ± 18, 9 ± 36, … }

10 = {10, 10 ± 18, 10 ± 36, … }
11 = {11, 11 ± 18, 11 ± 36, … }
12 = {12, 12 ± 18, 12 ± 36, … }
13 = {13, 13 ± 18, 13 ± 36, … }
14 = {14, 14 ± 18, 14 ± 36, … }
15 = {15, 15 ± 18, 15 ± 36, … }
16 = {16, 16 ± 18, 16 ± 36, … }
17 = {17, 17 ± 18, 17 ± 36, … }

2. Prove that the distinct equivalence classes in ℤ/𝑛ℤ are precisely 0, 1, 2, … , 𝑛 − 1 (use the Division Algo-
rithm).

Proof. The distinct equivalence classes in ℤ/𝑛ℤ are:

𝑎 ≡ 𝑟 (mod 𝑛)

for 𝑛 ∈ ℤ+ and 𝑎 ∈ ℤ where 𝑟 ∈ {0, 1, 2, … , 𝑛 − 1}

Thus, 𝑎 ≡ 𝑟 (mod 𝑛) ⟹ 𝑛 ∣ (𝑎 − 𝑟) ⟹ 𝑎 − 𝑟 = 𝑛𝑞 ⟹ 𝑎 = 𝑛𝑞 + 𝑟, which by the Division Algorithm and
𝑟 ∈ {0, 1, 2, … , 𝑛 − 1} give us the equations:

𝑎0 = 𝑛𝑞 + 0
𝑎1 = 𝑛𝑞 + 1



𝑎2 = 𝑛𝑞 + 2
…

𝑎𝑛−1 = 𝑛𝑞 + (𝑛 − 1)

Letting 𝑞 iterate over ℤ we can write these 𝑛 equations as 𝑟 = {𝑟 + 𝑞𝑛 ∣ 𝑞 ∈ ℤ} which are precisely
0, 1, 2, … , 𝑛 − 1.

3. Prove that if 𝑎 = 𝑎𝑛10𝑛 + 𝑎𝑛−110𝑛−1 + ⋅ ⋅ ⋅ + 𝑎110 + 𝑎0 is any positive integer then 𝑎 ≡ 𝑎𝑛 + 𝑎𝑛−1 + ⋅ ⋅ ⋅ + 𝑎1 + 𝑎0
(mod 9) (note that this is the usual arithmetic rule that the remainder after division by 9 is the same as the
sum of the decimal digits mod 9 - in particular an integer is divisible by 9 if and only if the sum of its digits
is divisible by 9) [note that 10 ≡ 1 (mod 9)].

Proof. Since 10 ≡ 1 (mod 9), then 102 ≡ 12 (mod 9), 103 ≡ 13 (mod 9), …10𝑛 ≡ 1𝑛 (mod 9). Therefore if
we take each component of 𝑎 = 𝑎𝑛10𝑛 + 𝑎𝑛−110𝑛−1 + ⋅ ⋅ ⋅ + 𝑎110 + 𝑎0 and seeing that in general 𝑎𝑛10𝑛 ≡ 𝑎𝑛
(mod 9) we have that:

𝑎 = 𝑎𝑛10𝑛 + 𝑎𝑛−110𝑛−1 + ⋅ ⋅ ⋅ + 𝑎110 + 𝑎0 ≡ 𝑎𝑛 + 𝑎𝑛−1 + ⋅ ⋅ ⋅ + 𝑎1 + 𝑎0 (mod 9)

4. Compute the remainder when 37100 is divisible by 29.

Noting that 3714 ≡ −1 (mod 29)we see that 37100 = 3714371437143714371437143714372 ≡ (−1)76 (mod 29) ⟹
37100 ≡ −6 (mod 29) ⟹ 23 (mod 29). Therefore, the remainder is 23. Note that we could have also used
Fermat’s Little Theorem here since 29 is prime.

5. Compute the last two digits of 91500.

To compute the last two decimal digits of 91500 we can take the mod of 100.

Since 910 ≡ 1 (mod 100), 920 ≡ 1 (mod 100), 930 ≡ 1 (mod 100), …etc., we have that 91500 ≡ 1 (mod 100)
and therefore the last two digits are 01.

6. Prove that the squares of the elements in ℤ/4ℤ are just 0 and 1.

Proof. The squares of the elements in ℤ/4ℤ are the squares of representatives of {0, 1, 2, 3}.

Let’s take a closer look:

02 ≡ 0 (mod 4)
12 ≡ 1 (mod 4)
22 ≡ 0 (mod 4)
32 ≡ 1 (mod 4)
42 ≡ 0 (mod 4)
52 ≡ 1 (mod 4)
62 ≡ 0 (mod 4)
72 ≡ 1 (mod 4) …

Which shows us that the squares are getting mapped to 0 and 1.

To make this more general, note that by definition 0 = {0, 0 ± 4, 0 ± 8, … } and it is easy to see that if we take
any multiple of 4 and square it, it will also be a multiple of 4 and therefore will have a remainder of 0 when



divided by 4. A similar argument for 1 shows that the remainder will always be 1. For representatives from
2 = {2, 2 ± 4, 2 ± 8, … }, if squared we have (2 + 4𝑛)(2 + 4𝑛) = 4 + 16𝑛 + 16𝑛2 = 4(1 + 4𝑛 + 4𝑛2) which is
divisible by 4 so will have a remainder of 0. A similar argument for the squares of representatives from 3
shows that they will have a remainder of 1. Therefore, the square elements in ℤ/4ℤ are just 0 and 1.

7. Prove for any integers 𝑎 and 𝑏 that 𝑎2 + 𝑏2 never leaves a remainder of 3 when divided by 4 (use the
previous exercise).

Proof. We have seen above that any integer squared and divided by 4 will either leave a remainder of 1 or
0. Therefore, given two integers 𝑎 and 𝑏, if we square them the remainders when divided by 4 can be 0 or
1. Therefore, when summed together we can get 0, 1, or 2. Therefore, 𝑎2 + 𝑏2 never leaves a remainder of 3
when divided by 4.

8. Prove that the equation 𝑎2 + 𝑏2 = 3𝑐2 has no solutions in nonzero integers 𝑎, 𝑏, 𝑐. [Consider the equation
mod 4 as in the previous two exercises and show that 𝑎, 𝑏 and 𝑐 would all have to be divisible by 2. Then
each of 𝑎2, 𝑏2 and 𝑐2 has a factor of 4 and by dividing through by 4 show that there would be a smaller set of
solutions to the original equation. Iterate to reach a contradiction.]

Proof. Suppose that the equation 𝑎2 + 𝑏2 = 3𝑐2 has solutions in nonzero integers. Using the above exercise
we know that 𝑎2 + 𝑏2 can only have a remainder of 0, 1, or 2 when divided by 4.

Therefore, 𝑎2 + 𝑏2 ≡ 0, 1, 2 (mod 4) ⟹ 3𝑐2 ≡ 0, 1, 2 (mod 4) but since the integer solutions where
considered nonzero 𝑐 ≠ 0. Additionally, we know that 𝑐 ≠ 1 as that would imply that 𝑎2 + 𝑏2 = 3 but if 𝑎
and 𝑏 are both 1 that would equal 2 and if any of them were larger than 1 than 𝑎2 + 𝑏2 would be 5 or greater.
Thus, 3𝑐2 ≡ 2 (mod 4) ⟹ 𝑎2 + 𝑏2 ≡ 2 (mod 4). Since both sides of 𝑎2 + 𝑏2 = 3𝑐2 are divisible by 4 the
squares must have a factor of 2.

Thus, we can write 𝑎2 + 𝑏2 = 3𝑐2 as 4(𝑘2 + 𝑡2) = 3(4)𝑠2, where 𝑘, 𝑡, 𝑠 are nonzero integers. Dividing the out
the 4 from both sides we are left with 𝑘2 + 𝑡2 = 3𝑠2 but we can use the same argument for this equation as
we did for the last and this process could be repeated indefinitely, which is absurd. Therefore the equation
𝑎2 + 𝑏2 = 3𝑐2 does not have nonzero integer solutions. (Note that this method of proof is called proof by
infinite decent or Fermat’s method of descent).

9. Prove that the square of any odd integer always leaves a remainder of 1 when divided by 8.

Proof. An odd integer can be represented by 2𝑛 + 1, 𝑛 ∈ ℤ. Therefore, (2𝑛 + 1)2 = (2𝑛 + 1)(2𝑛 + 1) =
4𝑛2 + 4𝑛 + 1 = 4(𝑛2 + 𝑛) + 1. 𝑛 itself will either be an odd or even integer so we can represent this with:

4((2𝑘)2+2𝑘)+1 = 16𝑘2+8𝑘+1 = 8(2𝑘2+𝑘)+1(for 𝑛 an even integer with 𝑘 ∈ ℤ)4((2𝑡+1)2+2𝑡+1)+1 = 16𝑡2+24𝑡+8+1 = 8(2𝑡2+3𝑡+1)+1(for 𝑛 an odd integer with 𝑡 ∈ ℤ)

Therefore, we have shown that the square of any odd integer always leaves a remainder of 1 when divided
by 8 as the two above equations are (2𝑛 + 1)2 ≡ 1 (mod 8).

10. Prove that the number of elements of (ℤ/𝑛ℤ)× is 𝜑(𝑛) where 𝜑 denotes the Euler 𝜑-function.

Proof. The residue classes of ℤ/𝑛ℤ are 𝑎 = {𝑎 + 𝑘𝑛 ∣ 𝑘 ∈ ℤ}. Additionally, (ℤ/𝑛ℤ)× = {𝑎 ∈ ℤ/𝑛ℤ ∣ there
exists 𝑐 ∈ ℤ/𝑛ℤ with 𝑎 ⋅ 𝑐 = 1}.

Therefore, 𝑎 ⋅ 𝑐 = 1 ⟹ (𝑎 + 𝑘𝑛)(𝑐 + 𝑔𝑛) = 1 + 𝑠𝑛 for integers 𝑘, 𝑔, 𝑠.



(𝑎 + 𝑘𝑛)(𝑐 + 𝑔𝑛) = 1 + 𝑠𝑛 ⟹ 𝑎𝑐 + 𝑎𝑔𝑛 + 𝑐𝑘𝑛 + 𝑘𝑔𝑛2 = 1 + 𝑠𝑛 ⟹ 𝑛(𝑘𝑛𝑔 + 𝑐𝑘 + 𝑎𝑔) + 𝑎𝑐 = 1 + 𝑠𝑛 so that:

𝑎𝑐 + 𝑛(𝑘𝑛𝑔 + 𝑐𝑘 + 𝑎𝑔 − 𝑠) = 1 ⟹ (𝑎, 𝑛) = 1 and (𝑐, 𝑛) = 1

This shows us that representatives of the elements of (ℤ/𝑛ℤ)× are relatively prime with 𝑛. Therefore, the
amount of elements of (ℤ/𝑛ℤ)× will be equal to the number of elements that have representatives relatively
prime to 𝑛 which is equal to 𝜑(𝑛) by definition.

11. Prove that if 𝑎, 𝑏 ∈ (ℤ/𝑛ℤ)×, then 𝑎 ⋅ 𝑏 ∈ (ℤ/𝑛ℤ)×.

Proof. If 𝑎 ∈ (ℤ/𝑛ℤ)× and 𝑏 ∈ (ℤ/𝑛ℤ)×, then we know that there exists 𝑐 and 𝑑 such that 𝑎 ⋅ 𝑐 = 1 and
𝑏 ⋅ 𝑑 = 1 so that:

(𝑎 ⋅ 𝑐)(𝑏 ⋅ 𝑑) = 1 ⋅ 1 ⟹ (𝑎 ⋅ 𝑏)(𝑐 ⋅ 𝑑) = 1 ⋅ 1
Therefore, if we can show that 1 ⋅ 1 = 1, then by definition 𝑎 ⋅ 𝑏 and 𝑐 ⋅ 𝑑 will be elements in (ℤ/𝑛ℤ)×.

1 ⋅ 1 = (1 + 𝑘𝑛)(1 + 𝑠𝑛) for some 𝑘, 𝑠 ∈ ℤ ⟹ 1 + 𝑠𝑛 + 𝑘𝑛 + 𝑠𝑘𝑛2 ⟹ 1 + 𝑛(𝑠 + 𝑘 + 𝑠𝑘𝑛) ⟹ 1 ⋅ 1 ∈ 1

Thus we have shown that if 𝑎, 𝑏 ∈ (ℤ/𝑛ℤ)×, then 𝑎 ⋅ 𝑏 ∈ (ℤ/𝑛ℤ)×.

12. Let 𝑛 ∈ ℤ, 𝑛 > 1, and let 𝑎 ∈ ℤ with 1 ≤ 𝑎 ≤ 𝑛. Prove if 𝑎 and 𝑛 are not relatively prime, there exists an
integer 𝑏 with 1 ≤ 𝑏 < 𝑛 such that 𝑎𝑏 ≡ 0 (mod 𝑛) and deduce that there cannot be an integer 𝑐 such that
𝑎𝑐 ≡ 1 (mod 𝑛).

Proof. Since 𝑎 and 𝑛 are relatively prime, they have a common divisor. Therefore, 𝑎 = 𝑚𝑥 and 𝑛 = 𝑏𝑥, with
𝑏, 𝑚, 𝑥 ∈ ℤ. Thus, 𝑏𝑎 = 𝑏𝑚𝑥 = 𝑚𝑛 ⟹ 𝑎𝑏 ≡ 0 (mod 𝑛)

Suppose there is a 𝑐 ∈ ℤ such that 𝑎𝑐 ≡ 1 (mod 𝑛). Then this means 𝑎𝑐 = 1 + 𝑘𝑛 for some 𝑘 ∈ ℤ. 𝑎𝑐 =
1 + 𝑘𝑛 ⟹ 𝑏𝑎𝑐 = 𝑏(1 + 𝑘𝑛) ⟹ 𝑏 = 𝑚𝑛𝑐 − 𝑏𝑘𝑛 ⟹ 𝑏 = 𝑛(𝑚𝑐 − 𝑏𝑘), which implies that 𝑏 is a multiply
of 𝑛 which is a contradiction with 1 ≤ 𝑏 < 𝑛. Therefore, there cannot be an integer 𝑐 such that 𝑎𝑐 ≡ 1
(mod 𝑛).

13. Let 𝑛 ∈ ℤ, 𝑛 > 1, and let 𝑎 ∈ ℤ with 1 ≤ 𝑎 ≤ 𝑛. Prove if 𝑎 and 𝑛 are relatively prime then there is an
integer 𝑐 such that 𝑎𝑐 ≡ 1 (mod 𝑛) [use the fact that the g.c.d of two integers is a ℤ-linear combination of
the integers].

Proof. Since (𝑎, 𝑛) = 1 ⟹ 𝑎𝑐 + 𝑛𝑏 = 1 for 𝑏, 𝑐 ∈ ℤ. Thus, 𝑎𝑐 + 𝑛𝑏 = 1 ⟹ 𝑎𝑐 − 1 = 𝑛(−𝑏) ⟹ 𝑎𝑐 ≡ 1
(mod 𝑛).

14. Conclude from the previous two exercises that (ℤ/𝑛ℤ)× is the set of elements 𝑎 of ℤ/𝑛ℤ with (𝑎, 𝑛) = 1
and hence prove Proposition 4. Verify this directly in the case 𝑛 = 12.

Proof. From the previous two exercises the only way we can have 𝑎𝑐 ≡ 1 (mod 𝑛) is if 𝑎 and 𝑛 are relatively
prime (exercise 13) because when they are not relatively prime we showed that there cannot be a 𝑐 that
meets this criteria. Therefore, the representatives of 𝑎 and 𝑐 in the definition of (ℤ/𝑛ℤ)× must be relatively
prime to 𝑛 so that we arrive at Proposition 4.

15. For each of the following pairs of integers 𝑎 and 𝑛, show that 𝑎 is relatively prime to 𝑛 and determine the
multiplicative inverse of 𝑎 in ℤ/𝑛ℤ.



(a) 𝑎 = 13, 𝑛 = 20.

20 = 13(1) + 7
13 = 7(1) + 6
7 = 6(1) + 1

17

(b) 𝑎 = 69, 𝑛 = 89.

89 = 69(1) + 20
69 = 20(3) + 9
20 = 9(2) + 2
9 = 2(4) + 1

40

(c) 𝑎 = 1891, 𝑛 = 3797.

3797 = 1891(2) + 15
1891 = 15(126) + 1
253

(d) 𝑎 = 6003722857, 𝑛 = 77695236973.

77695236973 = 6003722857(12) + 5650562689
6003722857 = 5650562689(1) + 353160168
5650562689 = 353160168(16) + 1

77695236753

16. Write a computer program to add and multiply mod 𝑛, for any 𝑛 given as input. The output of these
operations should be the least residues of the sums and products of the two integers. Also include the
feature that if (𝑎, 𝑛) = 1, an integer 𝑐 between 1 and 𝑛−1 such that 𝑎 ⋅ 𝑐 = 1 may be printed on request. (Your
program should not, of course, simply quote “mod” functions already built into many systems).

Left to the reader.


