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Chapter 2 - Starting at the beginning: the natural numbers

Exercises:

§2.2 Addition

2.2.1. Prove Proposition 2.2.5. (Hint: fix two of the variables and induct on the third.)

Proof. Proposition 2.2.5 claims

For any natural numbers a,b,c, we have (a + b) + c = a + (b + c).

We use induction. Let a, b, c, be natural numbers.

base case: For c = 0, (a + b) + c = a + (b + c) becomes

(a + b) + 0 = a + (b + 0) [c = 0]

(a + b) + 0 = a + (b) [Lemma 2.2.2.]

(a + b) = a + (b) [Definition 2.2.1 and Lemma 2.2.2.]

a + b = a + b

induction hypothesis: Suppose that (a + b) + c = a + (b + c).

induction step: We must now prove that (a + b) + (c++) = a + (b + (c++)).

The left-hand side (a + b) + (c++) becomes

(a + b) + (c++) = ((a + b) + c)++ [Lemma 2.2.3.]

while the right-hand side a + (b + (c++)) becomes

a + (b + (c++)) = a + ((b + c)++) [Lemma 2.2.3.]

= (a + (b + c))++ [Lemma 2.2.3.]

Thus, ((a + b) + c)++ = (a + (b + c))++ by the induction hypothesis and we have closed the induction.

2.2.2. Prove Lemma 2.2.10. (Hint: use induction.)

Proof. Lemma 2.2.10 claims,

Let a be a positive number. Then there exists exactly one natural number b such that b++ = a.



We use induction on a.

base case: Let a = 1, with is a positive number. We know that 0++ = 1. 0 is a natural number by Axiom
2.1 and is unique by Proposition 2.1.6.

induction hypothesis: Suppose that a = n and that there exists exactly one natural number b such that
b++ = a.

induction step: We must now prove that for a = n++ that there exists exactly one natural number b such
that b++ = a.

For a = n++, we know that n++ = (b++)++ by the induction hypothesis. From Axiom 2.2 and the induction
hypothesis, we know that b++ is a natural number. From Proposition 2.1.8 we know that no natural number
is equal to its successor and therefore we must have that b 6= b++, showing that b++ is unique such that
(b++)++ = a. This closes the induction.

2.2.3. Prove Proposition 2.2.12. (Hint: you will need many of the preceding propositions, corollaries, and
lemmas.)

Proof. Proposition 2.2.12 claims,

Let a,b,c be natural numbers. Then

(a) (Order is reflexive) a ≥ a.

(b) (Order is transitive) If a ≥ b and b ≥ c, then a ≥ c.

(c) (Order is anti-symmetric) If a ≥ b and b ≥ a, then a = b.

(d) (Addition preserves order) a ≥ b if and only if a + c ≥ b + c.

(e) a < b if and only if a++ ≤ b.

(f) a < b if and only if b = a + d for some positive number d.

(a). Since a = a, by definition, then by Definition 2.2.11 we must have that a ≥ a.

(b). If a ≥ b and b ≥ c, then by Definition 2.2.11 we must have that a = b + n1 and b = c + n2 for some
natural numbers n1 and n2, respectively. Then a = (c+n2)+n1 = c+(n2 +n1), since addition is associative
(Proposition 2.2.5). Furthermore, (n2 + n1) is a natural number from the definition of addition (Definition
2.2.1) and therefore, from Definition 2.2.11, we have that a ≥ c.

(c). If a ≥ b and b ≥ a, then by Definition 2.2.11 we must have that a = b + n1 and b = a + n2 for some
natural numbers n1 and n2, respectively. Then a = (a+n2)+n1 = a+(n2 +n1) since addition is associative
(Proposition 2.2.5). From Lemma 2.2.2, we must have that (n2 + n1) = 0, and therefore, from the previous
equalities, we have that a = b.

(d). Note: For iff type proofs we must prove both directions.

(→): If a ≥ b, then by Definition 2.2.11 we must have that a = b + n for some natural number n. Let c be
some natural number. Then a + c = b + n + c = b + c + n (addition is commutative), so that by Definition
2.2.11 we have that a + c ≥ b + c.



(←): If a+ c ≥ b+ c then by Definition 2.2.11 we must have that a+ c = b+ c+ n for some natural number
n. This can be re-written as a + c = (b + n) + c since addition is commutative and associative. Then using
the cancellation law, Proposition 2.2.6, we see that a = b + n and therefore, by Definition 2.2.11, we have
that a ≥ b.

(e.)

(→): If a < b then by Definition 2.2.11 we must have that b ≥ a and a 6= b. Therefore, we know that
b = a + n for some natural number n and since a 6= b we see that n must be a positive number (if it was 0
we would have a contradiction). From Lemma 2.2.10 there exists exactly one natural number, say c, such
that c++ = n. Thus, we have b = a + (c++) and from Lemma 2.2.3 we see that this can be formulated as
b = (a+ c)++. Using the commutativity of addition this becomes b = (c+a)++ and then using Lemma 2.2.3
again, we conclude that b = c + (a++) and using commutativity one last time we have that b = (a++) + c.
Therefore, by Definition 2.2.11, we have that a++ ≤ b.

(←): If a++ ≤ b, then by Definition 2.2.11, we have that b = (a++) + n for some natural number n. From
Definition 2.2.1, we can formulate this as b = (a+n)++ and then since addition is commutative this becomes
b = (n + a)++. Then we see from Lemma 2.2.3, we have b = a + (n++) and from Axiom 2.2 we know that
n++ is a natural number. Thus, from Defintiion 2.2.11 we see that b = a + (n++) implies a ≤ b.

(f.)

(→): If a < b then by (e) we must have that a++ ≤ b. By Definition 2.2.11, this means that b = (a++) + n
for some natural number n. From Definition 2.2.1 this becomes b = (a+ n)++ and by Lemma 2.2.3 we then
have b = a + (n++). From Axiom 2.2 we know that (n++) is some positive natural number, say d, from
Axiom 2.3. Therefore, b = a + d for some positive number d.

(←): If b = a + d for some positive number d, then d must be the successor of some natural number, say n.
Thus we see that b = a+(n++) and by Lemma 2.2.3 we have b = (a+n)++. From commutativity of addition
and Lemma 2.2.3 this then becomes b = (a++) + n which by Definition 2.2.11 implies that a++ ≤ b. Since
b = a + d for some positive number d, we must have that b 6= a by Lemma 2.2.2. Therefore, by Definition
2.2.11 we can conclude that a < b.

2.2.4. Justify the three statements marked (why?) in the proof of Proposition 2.2.13. Let us list the
(why?)s:

1. When a = 0 we have 0 ≤ b for all b.

Any natural number b must either be equal to 0 or equal to some multiple successor of 0, which by the
ordering of the natural numbers (Definition 2.2.11) is larger than 0.

2. If a > b, then a++ > b.

Even though it hasn’t been introduced in the textbook yet, instead of proving with the Propositions
and Lemmas we will justify this claim with a proof by contrapositive as it the simplicity seems to be
calling for it.

If a++ ≯ b then we must have that a++ ≤ b from the ordering of the natural numbers (Definition
2.2.11). From (e) of Exercise 2.2.3, we then see that we must have a < b which shows that a ≯ b.

If this seems too hand wavy at this point in our cultivation of the foundations of mathematics for your
liking, let us justify this claim without using a proof by contrapositive.

First we will prove a corollary from Lemmas 2.2.2 and 2.2.3:



From Lemma 2.2.3, if we set m = 0 we have n + (0++) = (n + 0)++ and by Lemma 2.2.2 and the fact
that 0++ = 1, we then have n + 1 = n++. This shows, using Definition 2.2.11, that n++ > n.

Now to the proof. If a > b, then from Definition 2.2.11 we know that a 6= b and a = b + n for some
positive natural number n. Using the corrollary above we have a++ > a > b and therefore a++ > b. For
the ones that would like even more proof of this, the last step can be seen by noting that a++ = a + 1
and using the fact that a = b + n so we must have a++ = (b + n) + 1 = b + (n + 1). From Definition
2.2.11, the result follows.

3. If a = b, then a++ > b.

If a = b then from the collorary derived in (2) above, we know that for a natural number n that
n++ > n. Therefore, we must have that b++ > b. However, since a = b we see that a++ = b++ and
therefore, we conclude that a++ > b.

2.2.5. Prove Proposition 2.2.14. (Hint: define Q(n) to be the property that P (m) is true for all m0 ≤ m < n;
note that Q(n) is vacuously true when n < m0.)

Proof. We are going to prove the Strong principle of induction using standard induction. Proposition 2.2.14
claims:

Let m0 be a natural number, and let P (m) be a property pertaining to an arbitrary natural number m.
Suppose that for each m ≥ m0, we have the following implication: if P (m′) is true for all natural numbers
m0 ≤ m′ < m, then P (m) is also true. (In particular, this means that P (m0) is true, since in this case the
hypothesis is vacuous.) Then we can conclude that P (m) is true for all natural numbers m ≥ m0.

As the hint suggests, let us define Q(n) to be the property that P (m) is true for all m0 ≤ m < n. We prove
this by induction on n.

base case: Let n = 0 so that we have Q(0) which is the property that ‘if P (m) is true for all m0 ≤ m < 0,
then P (0) is true‘. This is the vacuously true, as there are no natural numbers less than 0, therefore P (0)
is true and subsequently so is Q(0).

induction hypothesis: Suppose Q(n) is true, that is, the property that ‘if P (m) is true for all m0 ≤ m < n,
then P (n) is also true‘.

induction step: Q(n + 1) is the claim that ‘if P (m) is true for all m0 ≤ m < n + 1, then P (n + 1) is
also true‘. If m < n + 1, from Definition 2.2.11, we conclude that n + 1 6= m and there is a positive natural
number, say d, such that n + 1 = m + d. Since d is an arbitrary positive natural number, let d = 1. The
reason we can do this is because the criteria of n + 1 6= m and d being a positive natural number are both
satsified by setting d = 1, i.e., no rules have been broken. We then arrive at n + 1 = m + 1 and using the
cancellation law of Proposition 2.2.6, we then have n = m. Thus, the inequality m0 ≤ m < n + 1 becomes
m0 ≤ n < n + 1 and from the induction hypothesis we know that P (n) is true and therefore we must have
that P (n + 1) is true. Thus, Q(n + 1) is true. This closes the induction.

2.2.6. Let n be a natural number, and let P (m) be a property pertaining to the natural numbers such that
whenever P (m++) is true, then P (m) is true. Suppose that P (n) is also true. Prove that P (m) is true for
all natural numbers m ≤ n; this is known as the principle of backwards induction. (Hint: apply induction to
the variable n).

Proof. We are given a property P (m) such that whenever P (m++) is true, then P (m) is true. We are also
given that n is a natural number and that P (n) is also true. We are to prove that P (m) is true for all natural
numbers m ≤ n. We use induction on n.



base case: Let n = 0 and suppose that P (0) is true. Then we trivially have that P (m) is true for all natural
numbers m ≤ 0.

induction hypothesis: Suppose that P (n) is true such that P (m) is true for all natural numbers m ≤ n.

induction step: Suppose that P (n + 1) is true. We now need to prove that P (m) is true for all natural
numbers m ≤ n + 1. P (m) once again is the property that if P (m++) is true, then P (m) is true. Since
P (n + 1) is true by hypothesis, then P (n) is true. Since P (n) is true, we must have that P (m) is true for
all natural numbers m ≤ n by the induction hypothesis. Therefore, we have that P (m) is true for m ≤ n as
well as for P (n + 1), i.e., for n + 1. Thus, P (m) is true for all natural numbers m ≤ n + 1. This closes the
induction.

§2.3 Multipication

2.3.1 Prove Lemma 2.3.2. (Hint: modify the proofs of Lemmas 2.2.2, 2.2.3 and Proposition 2.2.4.)

Proof. Lemma 2.3.2 claims,

Let n,m be natural numbers. Then n×m = m× n.

First, we modify the proofs of Lemmas 2.2.2 and 2.2.3. We will then use this to modify the proof of
Proposition 2.2.4.

[Modification of Lemma 2.2.2 — proving that 0×m = 0] We use induction on n:

base case: The base case 0× 0 = 0 follows since we know that 0×m = m for every natrual number m, and
0 is a natural number.

induction hypothesis: Suppose that n× 0 = n.

induction step: We must show that (n++) × 0 = n++. By definition of multiplication we know that
(n++)× 0 = (n× 0)++, which is equal to n++ since n× 0 = n from the induction hypothesis. This closes
the induction.

[Modification of Lemma 2.2.3 — proving that n× (m++) = n + (n×m)] We use induction on n:

base case: For the base case n = 0 we have to prove that 0× (m++) = 0 + (0×m). We know that for any
natural number m, that m++ is also a natural number and by the definition of multiplication we know that
0× (m++) = 0. Therefore the left-hand side of the equation is equal to 0. By the definition of multiplication
the right-hand side 0 + (0×m) becomes 0 + (0) which equals 0. Thus the left and right-hand sides are equal.

induction hypothesis: Suppose that for any natural numbers n,m that n× (m++) = n + (n×m).

induction step: We must prove that (n+ 1)× (m++) = (n+ 1) + ((n+ 1)×m). Noting that n+ 1 = n++
this can be re-written as (n++)× (m++) = (n++) + ((n++)×m).

The left-hand side is (n×m++)+(m++) by definition of multiplication, which is equal to n+(n×m)+(m++)
by the induction hypothesis. By the definition of addition we see that this can be further simplified to
(n×m) + (m + n)++.

Similarly for the right-hand side, by the definition of multiplication we have (n++) + (n×m) +m. This can
be further simplified to (n×m) + (n + m)++ and finally (n×m) + (m + n)++ from the commutativity of
addition. As both sides of the equation are equal, this closes the induction.



[Modification of Proposition 2.2.4 — proving that n×m = m×n] We use induction on n (keeping m fixed):

base case: Let n = 0. From the definition of multiplication and the modification of Lemma 2.2.2 above,
0×m = 0 and m× 0 = 0. Therefore, 0×m = m× 0 for natural numbers n and m.

induction hypothesis: Suppose that n×m = m× n for natural numbers n and m.

induction step: We must prove that (n + 1) × m = m × (n + 1) for natural numbers n and m. Let us
re-write this as (n++)×m = m× (n++). The left-hand side is (n×m)+m by the definition of multiplication
while the righ-hand side is m + (m × n) from the modification of Lemma 2.2.3 above. Using the induction
hypothesis, we see that both the left-hand and right-hand sides are equal, closing the induction.

Therefore, n×m = m× n showing that multiplication is commutative.

2.3.2 Prove Lemma 2.3.3. (Hint: prove the second statement first.)

Proof. Lemma 2.3.3 claims,

Let n,m be natural nubmers. Then n×m = 0 if and only if at least one of n,m is equal to zero. In
particular, if n and m are both positive, then nm is also positive.

(←): If at least one of n,m is equal to zero then n×m either takes the form 0×m or n× 0, which are both
equal to zero by the definition of multipication and modification of Lemma 2.2.2 as seen in the last exercise.
Therefore, n×m = 0.

(→): If n ×m = 0 then since 0 ×m = 0 by the definition of multiplication we see that n = 0 satisfies this
equality. However we also know that since n× 0 = 0 by the modification of Lemma 2.2.2 above, we see that
m = 0 also satisfies this equality. Therefore, at least one of n,m is equal to zero.

In particular, if n > 0 and m > 0 then n ≥ 1 and m ≥ 1. Suppose that n = 1. Then n×m = 1×m = 0+m =
m by the definition of multipliction and addition. Since multiplication is commutative this argument also
holds for m = 1. Either way, we see that nm is also positive.

2.3.3 Prove Proposition 2.3.5. (Hint: modify the proof of Proposition 2.2.5 and use the distributive law.)

Proof. Proposition 2.3.5 claims,

For any natural nubmers a, b, c, we have (a× b)× c = a× (b× c).

We keep a and b fixed and use induction on c.

base case: For c = 0 we have (a× b)× 0 = a× (b× 0) and both sides are zero.

induction hypothesis: Suppose that (a× b)× c = a× (b× c).

induction step: We will prove that (a× b)× (c++) = a× (b× (c++)).

On the left-hand side (a× b)× (c++) is (c++)× (a× b) from commutativity and then (c× (a× b)) + (a× b)
from the definition of multiplication. One more operation of commutativity gives us ((a× b)× c) + (a× b).



On the right-hand side a× (b× (c++)) is a× ((c++)× b) from commutativity and then a× ((c× b) + b) from
the definition of multiplication. Using Proposition 2.3.4 this becomes (a × (c × b)) + (a × b) which is then
(a× (b× c)) + (a× b) from commutativity.

From the induction hypothesis, we see that the left-hand and right-hand sides are both equal, closing the
induction.

2.3.4 Prove the identity (a + b)2 = a2 + 2ab + b2 for all natural numbers a, b.

Proof. Let a, b be natural numbers.

Expanding the left-hand side we have (a + b)(a + b) which becomes (a + b)a + (a + b)b from the distributive
law. Using the distributive law once again this becomes aa + ba + ab + bb which is equal to a2 + 2ab + b2

since multiplication is commutative.

2.3.5 Prove Proposition 2.3.9. (Hint: fix q and induct on n.)

Proof. Proposition 2.3.9 claims,

Let n be a natural number, and let q be a positive number.
Then there exist natural numbers m, r such that 0 ≤ r < q and n = mq + r.

We fix q and use induction on n.

base case: Let n = 0. Then n = mq + r becomes 0 = mq + r. Let m = 0 and r = 0 as zero is a natural
number and r = 0 satisfies 0 ≤ r < q. The right-hand side becomes 0q + 0 = 0 + 0 = 0 showing that there
exist natural numbers m, r such that 0 ≤ r < q and n = mq + r.

induction hypothesis: Suppose that there exist natural numbers m, r such that 0 ≤ r < q and n = mq+r.

induction step: We will prove that there exist natural numbers m, r such that 0 ≤ r < q and n+1 = mq+r.

Note that n + 1 = mq + r becomes (m1q + r1) + 1 = mq + r from the induction hypothesis where we know
that m1, r1 are natural numbers. This becomes m1q + (r1 + 1) from associativity of addition and we know
that r1 + 1 = r1++, which is a natrual number. Therefore, we see that if we let m = m1 and r = r1++
the left-hand and right-hand sides are equal. This shows that there exist natural numbers m, r such that
0 ≤ r < q and n + 1 = mq + r, closing the induction.


