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Chapter 2 - Starting at the beginning: the natural numbers
Exercises:
§2.2 Addition

2.2.1. Prove Proposition 2.2.5. (Hint: fix two of the variables and induct on the third.)
Proof. Proposition 2.2.5 claims
For any natural numbers a,b,c, we have (a+b)+c=a+ (b+c).

We use induction. Let a, b, ¢, be natural numbers.

base case: For ¢ =0, (a +b) + ¢ = a+ (b+ ¢) becomes

(a+b)+0=a+(b+0) [c=0]
(a+b)+0=a+ () [Lemma 2.2.2.]
(a+bd)=a+(b) [Definition 2.2.1 and Lemma 2.2.2.]
a+b=a+b

induction hypothesis: Suppose that (a+b)+c=a+ (b+¢).
induction step: We must now prove that (a +b) + (c++) = a + (b + (c++)).
The left-hand side (a + b) 4+ (¢++) becomes
(a+0b) + (c++) = ((a+ b) + ¢)+ [Lemma 2.2.3.]

while the right-hand side a + (b + (¢4+)) becomes

a+ (b+ (c+H))=a+ (b+c)++) [Lemma 2.2.3.]
=(a+ (b+c))++ [Lemma 2.2.3.]

Thus, ((a +b) + ¢)+ = (a + (b + ¢))++ by the induction hypothesis and we have closed the induction. O
2.2.2. Prove Lemma 2.2.10. (Hint: use induction.)
Proof. Lemma 2.2.10 claims,

Let a be a positive number. Then there exists exactly one natural number b such that b++ = a.



We use induction on a.

base case: Let a = 1, with is a positive number. We know that 0++ = 1. 0 is a natural number by Axiom
2.1 and is unique by Proposition 2.1.6.

induction hypothesis: Suppose that a = n and that there exists exactly one natural number b such that
b+ =a.

induction step: We must now prove that for a = n-++ that there exists exactly one natural number b such
that b4++ = a.

For a = nt++, we know that n++ = (b++)++ by the induction hypothesis. From Axiom 2.2 and the induction
hypothesis, we know that b++ is a natural number. From Proposition 2.1.8 we know that no natural number
is equal to its successor and therefore we must have that b # b++, showing that b4+ is unique such that
(b++)++ = a. This closes the induction. O

2.2.3. Prove Proposition 2.2.12. (Hint: you will need many of the preceding propositions, corollaries, and
lemmas.)

Proof. Proposition 2.2.12 claims,

Let a,b,c be natural numbers. Then
(a) (Order is reflexive) a > a.
(b)
(c)

(d) (Addition preserves order) a > b if and only if a+c¢>b+c.

Order is transitive) If a > b and b > ¢, then a > c.

Order is anti-symmetric) If a > b and b > a, then a = b.
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(e) a < bif and only if a+ <b.

(f) a < b if and only if b =a+ d for some positive number d.

(a). Since a = a, by definition, then by Definition 2.2.11 we must have that a > a.

(b). If a > b and b > ¢, then by Definition 2.2.11 we must have that a = b+ n; and b = ¢+ ny for some
natural numbers n1 and na, respectively. Then a = (c+ng) +n1 = ¢+ (n2+ny), since addition is associative
(Proposition 2.2.5). Furthermore, (ng 4+ n1) is a natural number from the definition of addition (Definition
2.2.1) and therefore, from Definition 2.2.11, we have that a > c.

(¢). If a > b and b > a, then by Definition 2.2.11 we must have that a = b+ n; and b = a + ng for some
natural numbers ny and ng, respectively. Then a = (a+ng)+n1 = a+ (n2 +nq) since addition is associative
(Proposition 2.2.5). From Lemma 2.2.2, we must have that (ns 4+ n1) = 0, and therefore, from the previous
equalities, we have that a = b.

(d). Note: For iff type proofs we must prove both directions.

(=): If a > b, then by Definition 2.2.11 we must have that a = b+ n for some natural number n. Let ¢ be
some natural number. Then a + ¢ =b+n +c¢=0b+ ¢+ n (addition is commutative), so that by Definition
2.2.11 we have that a +¢ > b+ c.



(«<-): If a4+ ¢ > b+ c then by Definition 2.2.11 we must have that a + ¢ = b+ ¢+ n for some natural number
n. This can be re-written as a + ¢ = (b + n) + ¢ since addition is commutative and associative. Then using
the cancellation law, Proposition 2.2.6, we see that a = b 4+ n and therefore, by Definition 2.2.11, we have
that a > b.

(e.)

(=): If @ < b then by Definition 2.2.11 we must have that b > a and a # b. Therefore, we know that
b = a + n for some natural number n and since a # b we see that n must be a positive number (if it was 0
we would have a contradiction). From Lemma 2.2.10 there exists exactly one natural number, say ¢, such
that ¢4+ = n. Thus, we have b = a + (c++) and from Lemma 2.2.3 we see that this can be formulated as
b= (a+ ¢)++. Using the commutativity of addition this becomes b = (¢+ a)++ and then using Lemma 2.2.3
again, we conclude that b = ¢ 4+ (a++) and using commutativity one last time we have that b = (a++) + c.
Therefore, by Definition 2.2.11, we have that a++ < b.

(«<): If a++ < b, then by Definition 2.2.11, we have that b = (a++) + n for some natural number n. From
Definition 2.2.1, we can formulate this as b = (a+n)+H and then since addition is commutative this becomes
b= (n+ a)++. Then we see from Lemma 2.2.3, we have b = a + (n++) and from Axiom 2.2 we know that
n++ is a natural number. Thus, from Defintiion 2.2.11 we see that b = a + (n++) implies a < b.

()

(=): If @ < b then by (e) we must have that a++ < b. By Definition 2.2.11, this means that b = (a++) +n
for some natural number n. From Definition 2.2.1 this becomes b = (a + n)4+ and by Lemma 2.2.3 we then
have b = a + (n++). From Axiom 2.2 we know that (n+4+) is some positive natural number, say d, from
Axiom 2.3. Therefore, b = a + d for some positive number d.

(+): If b = a+ d for some positive number d, then d must be the successor of some natural number, say n.
Thus we see that b = a+ (n++) and by Lemma 2.2.3 we have b = (a+n)+H-. From commutativity of addition
and Lemma 2.2.3 this then becomes b = (a4+) + n which by Definition 2.2.11 implies that a4+ < b. Since
b = a + d for some positive number d, we must have that b # a by Lemma 2.2.2. Therefore, by Definition
2.2.11 we can conclude that a < b. O

2.2.4. Justify the three statements marked (why?) in the proof of Proposition 2.2.13. Let us list the
(why?)s:

1. When a =0 we have 0 < b for all b.

Any natural number b must either be equal to 0 or equal to some multiple successor of 0, which by the
ordering of the natural numbers (Definition 2.2.11) is larger than 0.

2. If a > b, then a++ > b.

Even though it hasn’t been introduced in the textbook yet, instead of proving with the Propositions
and Lemmas we will justify this claim with a proof by contrapositive as it the simplicity seems to be
calling for it.

If a4+ # b then we must have that a++ < b from the ordering of the natural numbers (Definition
2.2.11). From (e) of Exercise 2.2.3, we then see that we must have a < b which shows that a % b.

If this seems too hand wavy at this point in our cultivation of the foundations of mathematics for your
liking, let us justify this claim without using a proof by contrapositive.

First we will prove a corollary from Lemmas 2.2.2 and 2.2.3:



From Lemma 2.2.3, if we set m = 0 we have n 4+ (0++) = (n + 0)++ and by Lemma 2.2.2 and the fact
that 0++ = 1, we then have n + 1 = n4+. This shows, using Definition 2.2.11, that n++ > n.

Now to the proof. If a > b, then from Definition 2.2.11 we know that a # b and a = b + n for some
positive natural number n. Using the corrollary above we have a4+ > a > b and therefore a++ > b. For
the ones that would like even more proof of this, the last step can be seen by noting that a4+ =a + 1
and using the fact that a = b + n so we must have a++ = (b+n) +1 =b+ (n + 1). From Definition
2.2.11, the result follows.

3. If a =0, then a++ > b.

If @ = b then from the collorary derived in (2) above, we know that for a natural number n that
n++ > n. Therefore, we must have that b4++ > b. However, since a = b we see that a4++ = b4+ and
therefore, we conclude that a++ > b.

2.2.5. Prove Proposition 2.2.14. (Hint: define Q(n) to be the property that P(m) is true for all mg < m < n;
note that Q(n) is vacuously true when n < myg.)

Proof. We are going to prove the Strong principle of induction using standard induction. Proposition 2.2.14
claims:

Let mg be a natural number, and let P(m) be a property pertaining to an arbitrary natural number m.
Suppose that for each m > mg, we have the following implication: if P(m') is true for all natural numbers
mo < m’ < m, then P(m) is also true. (In particular, this means that P(mg) is true, since in this case the
hypothesis is vacuous.) Then we can conclude that P(m) is true for all natural numbers m > my.

As the hint suggests, let us define Q(n) to be the property that P(m) is true for all my < m < n. We prove
this by induction on n.

base case: Let n = 0 so that we have Q(0) which is the property that ‘if P(m) is true for all mg < m <0,
then P(0) is true‘. This is the vacuously true, as there are no natural numbers less than 0, therefore P(0)
is true and subsequently so is Q(0).

induction hypothesis: Suppose Q(n) is true, that is, the property that ‘if P(m) is true for all mg < m < n,
then P(n) is also true‘.

induction step: Q(n + 1) is the claim that ‘if P(m) is true for all mg < m < n+1, then P(n+ 1) is
also true‘. If m < n + 1, from Definition 2.2.11, we conclude that n + 1 # m and there is a positive natural
number, say d, such that n + 1 = m + d. Since d is an arbitrary positive natural number, let d = 1. The
reason we can do this is because the criteria of n + 1 # m and d being a positive natural number are both
satsified by setting d = 1, i.e., no rules have been broken. We then arrive at n +1 = m + 1 and using the
cancellation law of Proposition 2.2.6, we then have n = m. Thus, the inequality mg < m < n + 1 becomes
mo <n <n+ 1 and from the induction hypothesis we know that P(n) is true and therefore we must have
that P(n + 1) is true. Thus, Q(n + 1) is true. This closes the induction. O

2.2.6. Let n be a natural number, and let P(m) be a property pertaining to the natural numbers such that
whenever P(m++) is true, then P(m) is true. Suppose that P(n) is also true. Prove that P(m) is true for
all natural numbers m < n; this is known as the principle of backwards induction. (Hint: apply induction to
the variable n).

Proof. We are given a property P(m) such that whenever P(m++) is true, then P(m) is true. We are also
given that n is a natural number and that P(n) is also true. We are to prove that P(m) is true for all natural
numbers m < n. We use induction on n.



base case: Let n = 0 and suppose that P(0) is true. Then we trivially have that P(m) is true for all natural
numbers m < 0.

induction hypothesis: Suppose that P(n) is true such that P(m) is true for all natural numbers m < n.

induction step: Suppose that P(n + 1) is true. We now need to prove that P(m) is true for all natural
numbers m < n + 1. P(m) once again is the property that if P(m++) is true, then P(m) is true. Since
P(n + 1) is true by hypothesis, then P(n) is true. Since P(n) is true, we must have that P(m) is true for
all natural numbers m < n by the induction hypothesis. Therefore, we have that P(m) is true for m <n as
well as for P(n+ 1), i.e., for n + 1. Thus, P(m) is true for all natural numbers m < n + 1. This closes the
induction. O

§2.3 Multipication

2.3.1 Prove Lemma 2.3.2. (Hint: modify the proofs of Lemmas 2.2.2, 2.2.3 and Proposition 2.2.4.)
Proof. Lemma 2.3.2 claims,
Let n,m be natural numbers. Then n X m =m X n.

First, we modify the proofs of Lemmas 2.2.2 and 2.2.3. We will then use this to modify the proof of
Proposition 2.2.4.

[Modification of Lemma 2.2.2 — proving that 0 x m = 0] We use induction on n:

base case: The base case 0 x 0 = 0 follows since we know that 0 x m = m for every natrual number m, and
0 is a natural number.

induction hypothesis: Suppose that n x 0 = n.

induction step: We must show that (n4++) x 0 = n++. By definition of multiplication we know that
(n++) x 0 = (n x 0)4+, which is equal to n-++ since n x 0 = n from the induction hypothesis. This closes
the induction.

[Modification of Lemma 2.2.3 — proving that n x (m++) = n + (n x m)] We use induction on n:

base case: For the base case n = 0 we have to prove that 0 x (m++) = 0+ (0 x m). We know that for any
natural number m, that m-++ is also a natural number and by the definition of multiplication we know that
0 x (m++) = 0. Therefore the left-hand side of the equation is equal to 0. By the definition of multiplication
the right-hand side 0+ (0 x m) becomes 0+ (0) which equals 0. Thus the left and right-hand sides are equal.

induction hypothesis: Suppose that for any natural numbers n, m that n x (m++) = n+ (n x m).

induction step: We must prove that (n+ 1) X (m-++) = (n+ 1)+ ((n 4+ 1) x m). Noting that n + 1 = n++
this can be re-written as (n++) x (m—++) = (n++) + ((n++) x m).

The left-hand side is (n x m+4+) + (m++) by definition of multiplication, which is equal to n+ (n x m)+ (m++)
by the induction hypothesis. By the definition of addition we see that this can be further simplified to
(nxm)+ (m+n)+.

Similarly for the right-hand side, by the definition of multiplication we have (n4+) + (n x m) 4+ m. This can
be further simplified to (n x m) + (n +m)++ and finally (n x m) 4+ (m + n)++ from the commutativity of
addition. As both sides of the equation are equal, this closes the induction.



[Modification of Proposition 2.2.4 — proving that n x m = m x n] We use induction on n (keeping m fixed):

base case: Let n = 0. From the definition of multiplication and the modification of Lemma 2.2.2 above,
0 xm =0 and m x 0 = 0. Therefore, 0 x m = m x 0 for natural numbers n and m.

induction hypothesis: Suppose that n x m = m x n for natural numbers n and m.

induction step: We must prove that (n + 1) x m = m x (n + 1) for natural numbers n and m. Let us
re-write this as (n++) x m = m x (n+). The left-hand side is (n x m)+m by the definition of multiplication
while the righ-hand side is m + (m x n) from the modification of Lemma 2.2.3 above. Using the induction
hypothesis, we see that both the left-hand and right-hand sides are equal, closing the induction.

Therefore, n x m = m x n showing that multiplication is commutative. O
2.3.2 Prove Lemma 2.3.3. (Hint: prove the second statement first.)
Proof. Lemma 2.3.3 claims,

Let n,m be natural nubmers. Then n x m = 0 if and only if at least one of n,m is equal to zero. In
particular, if n and m are both positive, then nm is also positive.

(+): If at least one of n,m is equal to zero then n x m either takes the form 0 x m or n x 0, which are both
equal to zero by the definition of multipication and modification of Lemma 2.2.2 as seen in the last exercise.
Therefore, n x m = 0.

(—): If n x m = 0 then since 0 x m = 0 by the definition of multiplication we see that n = 0 satisfies this
equality. However we also know that since n x 0 = 0 by the modification of Lemma 2.2.2 above, we see that
m = 0 also satisfies this equality. Therefore, at least one of n, m is equal to zero.

In particular, if n > 0 and m > 0 thenn > 1 and m > 1. Suppose that n = 1. Thennxm =1xm =0+m =
m by the definition of multipliction and addition. Since multiplication is commutative this argument also
holds for m = 1. Either way, we see that nm is also positive. O

2.3.3 Prove Proposition 2.3.5. (Hint: modify the proof of Proposition 2.2.5 and use the distributive law.)
Proof. Proposition 2.3.5 claims,
For any natural nubmers a,b,c, we have (a x b) X ¢ =a x (b X ¢).

We keep a and b fixed and use induction on c.

base case: For ¢ =0 we have (a X b) x 0 = a x (b x 0) and both sides are zero.
induction hypothesis: Suppose that (@ x b) x ¢ =a x (b x ¢).

induction step: We will prove that (a x b) x (¢4++) = a x (b x (c++)).

On the left-hand side (a X b) x (¢++) is (e++) x (a x b) from commutativity and then (¢ x (a X b)) + (a x b)
from the definition of multiplication. One more operation of commutativity gives us ((a x b) x ¢) + (a X b).



On the right-hand side a X (b x (¢c++)) is a X ((e++) x b) from commutativity and then a X ((¢ x b) +b) from
the definition of multiplication. Using Proposition 2.3.4 this becomes (a x (¢ x b)) + (a x b) which is then
(a x (bx¢))+ (a xb) from commutativity.

From the induction hypothesis, we see that the left-hand and right-hand sides are both equal, closing the
induction. O

2.3.4 Prove the identity (a + b)? = a? + 2ab + b? for all natural numbers a, b.

Proof. Let a,b be natural numbers.

Expanding the left-hand side we have (a + b)(a + b) which becomes (a + b)a + (a + b)b from the distributive
law. Using the distributive law once again this becomes aa + ba + ab + bb which is equal to a? + 2ab + b?
since multiplication is commutative. O

2.3.5 Prove Proposition 2.3.9. (Hint: fix ¢ and induct on n.)
Proof. Proposition 2.3.9 claims,

Let n be a natural number, and let q be a positive number.
Then there exist natural numbers m,r such that 0 <r < q andn=mq+r.

We fix ¢ and use induction on n.

base case: Let n = 0. Then n = mgq + r becomes 0 = mqg + r. Let m = 0 and » = 0 as zero is a natural
number and r = 0 satisfies 0 < r < ¢. The right-hand side becomes 0g + 0 = 0 + 0 = 0 showing that there
exist natural numbers m,r such that 0 < r < g and n = mq +r.

induction hypothesis: Suppose that there exist natural numbers m, r such that 0 < r < g and n = mqg+r.
induction step: We will prove that there exist natural numbers m, r such that 0 < r < gand n+1 = mqg+r.

Note that n 4+ 1 = mgq + r becomes (m1q + r1) + 1 = mg + r from the induction hypothesis where we know
that mq,r; are natural numbers. This becomes myq + (r1 + 1) from associativity of addition and we know
that vy + 1 = r1++, which is a natrual number. Therefore, we see that if we let m = m; and r = r{++
the left-hand and right-hand sides are equal. This shows that there exist natural numbers m,r such that
0 <r < gqand n+1=mq+r, closing the induction. O



