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Chapter 5 - The real numbers

Exercises:

§5.1 Cauchy sequences

5.1.1. Prove Lemma 5.1.15. (Hint: use the fact that an is eventually 1-steady, and thus can be split into a
finite sequence and a 1-steady sequence. Then use Lemma 5.1.14 for the finite part. Note there is nothing
special about the number 1 used here; any other positive number would have sufficed.)

Proof. We need to show that every Cauchy sequence (an)
∞
n=1 is bounded.

By Definition 5.1.8 a sequence is a Cauchy sequence iff for every ε > 0, there exists an N ≥ 0 such that
d(aj , ak) ≤ ε for all j, k ≥ N . Definition 5.1.12 says that an infinite sequence (an)

∞
n=1 is bounded by M iff

|ai| ≤M for all i ≥ 1.

As the hint suggests, let us use the fact that an is eventually 1-steady. For the finite portion of an (which
is disjoint from the 1-steady part of the sequence) we know from Lemma 5.1.14 that it is bounded by some
M ≥ 0. If the entire sequence is 1-steady to begin with then let M = |a1|+ 1 (see Example 5.1.10). Then,
for the rest of an which is 1-steady, we know that the difference between successive elements of the sequence
will not be more than 1. Thus, the 1-steady portion of the sequence is also bounded by M .

Therefore, every Cauchy sequence (an)
∞
n=1 is bounded.

§5.2 Equivalent Cauchy sequences

5.2.1. Show that if (an)
∞
n=1 and (bn)

∞
n=1 are equivalent sequences of rationals, then (an)

∞
n=1 is a Cauchy

sequence if and only if (bn)
∞
n=1 is a Cauchy sequence.

Proof. If (an)
∞
n=1 and (bn)

∞
n=1 are equivalent sequences of rationals, then for each rational ε > 0 the sequences

(an)
∞
n=1 and (bn)

∞
n=1 are eventually ε-close. That is, for every rational ε > 0, there exists an N ≥ 0 such

that |an − bn| ≤ ε for all n ≥ N .

Now, if (an)
∞
n=1 is a Cauchy sequence then it is eventually ε-steady. That is, there exists an N ≥ 0 such

that d(aj , ak) ≤ ε for all j, k ≥ N . Thus, we know that for ever rational ε > 0 there exists an N ≥ 0 such
that |an − bn| ≤ ε and d(aj , ak) = |aj − ak| ≤ ε for all n, j, k ≥ N . Hence, we can re-label n so that we have
|aj − bj | or |ak − bk|. Flipping one of the absolute values, summing, and using the triangle inequality for
absolute value we have

|(bj − aj) + (ak − bk)| ≤ |bj − aj |+ |ak − bk| ≤ ε+ ε (1)

|(bj − bk) + (ak − aj)| ≤ (2)

|(bj − bk)| ≤ |(bj − bk) + (ak − aj)| ≤ (3)

We see that |(bj − bk)| ≤ ε + ε = ε′ for all j, k ≥ N showing that (bn)
∞
n=1 is also a Cauchy sequence. The

converse argument reasons the same way.



Therefore, if (an)
∞
n=1 and (bn)

∞
n=1 are equivalent sequences of rationals, then (an)

∞
n=1 is a Cauchy sequence

if and only if (bn)
∞
n=1 is a Cauchy sequence.

5.2.2. Let ε > 0. Show that if (an)
∞
n=1 and (bn)

∞
n=1 are eventually ε-close, then (an)

∞
n=1 is bounded if and

only if (bn)
∞
n=1 is bounded.

Proof. If (an)
∞
n=1 and (bn)

∞
n=1 are eventually ε-close, then there exists an N ≥ 0 such that the sequences

(an)
∞
n=N and (bn)

∞
n=N are ε-close. That is, there exists an N ≥ 0 such that |an − bn| ≤ ε for all n ≥ N .

Now, if (an)
∞
n=1 is bounded then it is bounded by M for some rational M ≥ 0. That is, |ai| ≤ M for all

i ≥ 1. Since |an − bn| ≤ ε for all n ≥ N and |an − bn| = |bn − an| because d(an, bn) = d(bn, an) we see that

|bn| = |(bn − an) + an| ≤ |bn − an|+ |an| ≤ ε+M

for all n ≥ N . Now, |bn| for n < N is bounded, by say M2, since it is a finite sequence (Lemma 5.1.14).
Therefore, |bi| ≤ ε + M + M2 for all i ≥ 1, showing us that (bn)

∞
n=1 is bounded. The converse argument

reasons the same way.

Therefore, if (an)
∞
n=1 and (bn)

∞
n=1 are eventually ε-close, then (an)

∞
n=1 is bounded if and only if (bn)

∞
n=1 is

bounded.

§5.3 The construction of the real numbers

5.3.1. Prove Proposition 5.3.3. (Hint: you may find Proposition 4.3.7 to be useful.)

Proof. Let x = LIMn→∞ an, y = LIMn→∞ bn, z = LIMn→∞ cn.

Since any sequence is 0-close to itself the sequence (an)
∞
n=1 is 0-close to itself and therefore (an)

∞
n=1 and

(an)
∞
n=1 are equivalent sequences. Thus, if x = LIMn→∞ an we must have that x = x as the two Cauchy

sequences (an)
∞
n=1 are equivalent.

If x = y then LIMn→∞ an = LIMn→∞ bn so that (an)
∞
n=1 and (bn)

∞
n=1 are equivalent Cauchy sequences.

Thus, we must have that LIMn→∞ bn = LIMn→∞ an and therefore y = x.

If x = y and y = z then LIMn→∞ an = LIMn→∞ bn and LIMn→∞ bn = LIMn→∞ cn so that (an)
∞
n=1 , (bn)

∞
n=1

and (cn)
∞
n=1 are equivalent Cauchy sequences. Now, since (an)

∞
n=1 , (bn)

∞
n=1, and (cn)

∞
n=1 are equivalent

Cauchy sequences we must have that LIMn→∞ an = LIMn→∞ cn and therefore x = z.

5.3.2. Prove Proposition 5.3.10. (Hint: again, Proposition 4.3.7 may be useful.)

Proof. Let x = LIMn→∞ an, y = LIMn→∞ bn and x′ = LIMn→∞ a′n. By Definition 5.3.9 we have that
xy := LIMn→∞ anbn. Now we will show that this is a real number. By Definition 5.3.1 a real number is
defined to be an object of the form LIMn→∞ an, where (an)

∞
n=1 is a Cauchy sequence of rational numbers.

Therefore, we need to show that (anbn)
∞
n=1 is a Cauchy sequence. Once again, a Cauchy sequence is a

sequence that is eventually ε-steady and a sequence that is eventually ε-steady is a sequence where for any
rational ε > 0 there exists N ≥ 1 such that |ajbj − akbk| ≤ ε for all n ≥ N (N ≥ 1 since we are indexing
the sequence starting at 1). Now, from the definition of real numbers we know that (an)

∞
n=1 and (bn)

∞
n=1 are

Cauchy sequences, that is, that they are eventually ε-steady and δ-steady, respectively. Therefore we must
have that for any ε, δ > 0 there exists N1, N2 ≥ 1 such that |aj − ak| ≤ ε and |bs − bt| ≤ δ for all j, k ≥ N1



and s, t ≥ N2. Let N = max(N1, N2) so that j, k, s, t ≥ N . Since we are now indexing over the same N we
can just use j and k in place of s and t for example. From Proposition 4.3.7(h) we know that since aj , ak
are ε-close and bj , bk are δ-close, then ajbj and akbk are both (ε|bj | + δ|aj | + εδ)-close. Since ε and δ are
arbitrarily small, we can take them to be values such that ajbj and akbk are both eventually ε′-close. This
shows that (anbn)

∞
n=1 is a Cauchy sequence and therefore xy is a real number.

Furthermore, if x = x′ and we follow the same construction as above we will have two sequences, xy and
x′y, that must be equivalent Cauchy sequences as they are both eventually ε′-close for some ε′ > 0.

5.3.3. Let a, b be rational numbers. Show that a = b if and only if LIMn→∞ a = LIMn→∞ b (i.e., the Cauchy
sequences a, a, a, a, . . . and b, b, b, b . . . equivalent if and only if a = b). This allows us to embed the rational
numbers inside the real numbers in a well-defined manner.

Proof. If a = b then we have that a, a, a, a · · · = b, b, b, b . . . Both sequences are Cauchy and therefore we
have that LIMn→∞ a = LIMn→∞ b. Conversely, if LIMn→∞ a = LIMn→∞ b then a, a, a, a . . . and b, b, b, b . . .
are both Cauchy sequences. Thus, they are eventually ε-close and therefore by Proposition 4.3.7(a) we must
have that a = b.

5.3.4. Let (an)
∞
n=0 be a sequence of rational numbers which is bounded. Let (bn)

∞
n=0 be another sequence

of rational numbers which is equivalent to (an)
∞
n=0. Show that (bn)

∞
n=0 is also bounded. (Hint: use Exercise

5.2.2.)

Proof. Let (an)
∞
n=0 be bounded by M .

Since (an)
∞
n=0 is equivalent to (bn)

∞
n=0 we have that for any ε > 0 there exists an N ≥ 0 such that |an−bn| ≤ ε

for all n ≥ N . Similar to Exercise 5.2.2 we see that since |an − bn| = |bn − an| we can show that |bn| =
|(bn − an) + an| ≤ |bn − an|+ |an| ≤ ε+M and therefore (bn)

∞
n=0 is also bounded.

5.3.5. Show that LIMn→∞ 1/n = 0.

Proof. For LIMn→∞ 1/n = 0 we need to show that for any ε > 0 that there exists an N ≥ 0 such that
|1/n − 0| = |1/n| ≤ ε for all n ≥ N . We can let ε = 1/n as |1/n| ≤ 1/n for all n ≥ N . Thus, we have that
LIMn→∞ 1/n = 0.

§5.4 Ordering the reals

5.4.1. Prove Proposition 5.4.4. (Hint: if x is not zero, and x is the formal limit of some sequence (an)
∞
n=1,

then this sequence cannot be eventually ε-close to the zero sequence (0)∞n=1 for every single ε > 0. Use
this to show that the sequence (an)

∞
n=1 is eventually either positively bounded away from zero or negatively

bounded away from zero.)

Proof. Proposition 5.4.4 claims For every real number x, exactly one of the following three statements is true:
(a) x is zero; (b) x is positive; (c) x is negative. A real number x is negative if and only if −x is positive. If
x and y are positive, then so are x+ y and xy.

We need to show that at least one of (a)− (c) is true and also that at most one of (a)− (c) is true.

If x = 0 then we have (a). If x 6= 0 then x = LIMn→∞ an for some sequence of rational numbers (an)
∞
n=1.

Now, since x 6= 0 we know that (an)
∞
n=1 must be bounded away from zero by Lemma 5.3.14. By Definition



5.4.1 we must then have that (an)
∞
n=1 is either positively or negatively bounded away from zero. Thus, by

Definition 5.4.3 we must have that x is either positive or negative. Thus, exactly one of (a)− (c) is true.

If a real number x is negative then we must have that the sequence of its formal limit is negatively bounded
away from zero. Thus, there exists a negative rational −c < 0 such that an ≤ −c for all n ≥ 1. By
Proposition 5.3.11 we know that −x would give us LIMn→∞−an and therefore we would have that c > 0
such that −an ≥ c for all n ≥ 1. Thus, −x is positively bounded away from zero and therefore it must be
positive. The converse argument is performed in the same manner in the opposite direction. Therefore, x is
negative if and only if −x is positive.

If x and y are positive, then x and y are both positively bounded away from zero. Then, using Proposition
5.3.11 we see that the sum or multiplication of these sequences must also be positively bounded away from
zero and therefore x+ y and xy are also positive.

5.4.2. Prove the remaining claims in Proposition 5.4.7.

Proof. Let x, y, z be real numbers.

(a) (Order trichotomy) Exactly one of the three statements x = y, x < y, or x > y is true.

If x > y then by Definition 5.4.6 we have that x − y is a positive real number. Thus, x − y 6= 0 and
from Proposition 5.4.4 if x − y is positive then −(x − y) = y − x is negative. If x < y then use the
previous argument but switch the positions of x and y. If x = y then x− y = 0 so we can’t have either
of x > y or x < y. Therefore, exactly one of the three statements x = y, x < y, or x > y is true.

(b) (Order is anti-symmetric) One has x < y if and only if y > x.

If x < y then x−y is a negative real number and by Proposition 5.4.4 we must have that −(x−y) = y−x
is a positive number so that y > x. The converse argument is the same but in the other direction.
Therefore, one has x < y if and only if y > x.

(c) (Order is transitive) If x < y and y < z, then x < z.

If x < y and y < z then x − y and y − z are both negative real numbers. Thus, summing these two
negative numbers together we have x− y + y − z = x− z and therefore x < z.

(d) (Addition preserves order) If x < y, then x+ z < y + z.

If x < y then x− y is a negative real number. If we add a positive real number z to both x and y we
have that (x+ z)− (y + z) so that x+ z < y + z.

(e) (Positive multiplication preserves order) If x < y and z is positive, then xz < yz.

Proved in the textbook.

5.4.3. Show that for every real number x there is exactly one integer N such that N ≤ x < N + 1. (This
integer N is called the integer part of x, and is sometimes denoted N = bxc.)

Proof. If x is equal to an integer let us denote it as N . Then, N ≤ x < N + 1 is true, since x = N . If x
is not equal to an integer let N be the closest integer to x that is less than x. Then, we must have that
N < x < N + 1, since x is not an integer. That is, it must be between N and N + 1 as we chose N to be



the closest integer to x that was less than it. That is, x can’t more than N + 1 as that would mean N + 1
is less than it and closer to it than N is, which would be a contradiction. Additionally, we see that it can’t
be equal to N + 1 since it is not an integer. Therefore, as stated, we have that N < x < N + 1 and hence
for every real number x we have that there is exactly one integer N such that N ≤ x < N + 1.

5.4.4. Show that for any positive real number x > 0 there exists a positive integer N such that x > 1/N > 0.

Proof. From the Archimedean property, Corollary 5.4.13, we know that for positive real numbers x and ε
that there exists a positive integer M such that Mε > x. Now, since x and ε are arbitrary let x = 1 and let
us denote ε as x. Also, let us denote the positive integer M as N . Thus we have that Nx > 1 which it is
easy to see that we have Nx > 1 > 0 and dividing by N we have that x > 1/N > 0 as desired.

5.4.5. Prove Proposition 5.4.14. (Hint: use Exercise 5.4.4. You may also need to argue by contradiction.)

Proof. Proposition 5.4.14 claims Given any two real numbers x < y, we can find a rational number q such
that x < q < y.

If x < y we know that y−x is a positive real number. From Exercise 5.4.4 we also have that y−x > 1/N > 0
for some positive integer N . Adding x to all the sides we have that y > 1/N + x > x which becomes

y >
1 +Nx

N
> x. From Exercise 5.4.3 we also see that y >

1 +Nx

N
≥ 1 +Nbxc

N
> x. Now, q =

1 +Nbxc
N

is a rational number as the numerator and denominator are both integers. Therefore, given any two real
numbers x < y, we can find a rational number q such that x < q < y.

5.4.6. Let x, y be real numbers and let ε > 0 be a positive real. Show that |x − y| < ε if and only if
y − ε < x < y + ε, and that |x− y| ≤ ε if and only if y − ε ≤ x ≤ y + ε.

Proof. If |x− y| < ε then

ε− (x− y) and ε− (−(x− y))

ε− x+ y and ε− (y − x)

(y + ε)− x and x− (y − ε)
x < (y + ε) and (y − ε) < x

and therefore y − ε < x < y + ε. The converse argument is just going in the reverse direction.

If |x− y| ≤ ε then we already know the above result so for the case that |x− y| = ε we have

x− y = ε and − (x− y) = ε

x = y + ε and y − ε = x

and therefore y − ε ≤ x ≤ y + ε. The converse argument is just going in the reverse direction.

5.4.7. Let x and y be real numbers. Show that x ≤ y + ε for all real numbers ε > 0 if and only if x ≤ y.
Show that |x− y| ≤ ε for all real numbers ε > 0 if and only if x = y.

Proof. If x ≤ y + ε for all real numbers ε > 0 then suppose for sake of contradiction that x > y. Then
x − y > 0 is a positive number and so is (x − y)/2. Let ε = (x − y)/2. Thus, x ≤ y + ε which becomes
x ≤ y + (x − y)/2 and hence 2x ≤ 2y + x − y and finally x ≤ y, which is a contradiction. Therefore, If
x ≤ y + ε for all real numbers ε > 0 then x ≤ y.



Conversely, if x ≤ y then suppose for the sake of contradiction that x > y + ε for all real numbers ε > 0.
Then x − y + ε > 0 is a positive number. But x ≤ y and thus x − y ≤ 0, which is a not a positive number
and hence a contradiction. Therefore, if x ≤ y then x ≤ y + ε for all ε > 0.

If |x − y| ≤ ε for all real numbers ε > 0 then for the sake of contradiction suppose that x 6= y. Then we
must have that |x − y| > 0 and thus |x − y|/2 > 0 as well. Let ε = |x − y|/2 so that |x − y| ≤ ε becomes
|x− y| ≤ |x− y|/2. Hence 2|x− y| ≤ |x− y|, which is absurd as |x− y| > 0. Therefore, if |x− y| ≤ ε for all
real numbers ε > 0 then x = y.

Conversely, if x = y then for the sake of contradiction suppose that |x − y| > ε for all real numbers ε > 0.
But x = y and thus |x − y| = 0 and thus we have a contradiction since ε > 0. Therefore, if x = y then
|x− y| ≤ ε for all real numbers ε > 0.

5.4.8. Let (an)
∞
n=1 be a Cauchy sequence of rationals, and let x be a real number. Show that if an ≤ x for

all n ≥ 1, then LIMn→∞ an ≤ x. Similarly, show that if an ≥ x for all n ≥ 1, then LIMn→∞ an ≥ x. (Hint:
prove by contradiction. Use Proposition 5.4.14 to find a rational between LIMn→∞ an and x, and then use
Proposition 5.4.9 or Corollary 5.4.10.)

Proof. If an ≤ x for all n ≥ 1, then for the sake of contradiction suppose that LIMn→∞ an > x. We know
that LIMn→∞ an is a real number and since LIMn→∞ an > x we can find a rational number q such that
LIMn→∞ an > q > x by Proposition 5.4.14. However, since an ≤ x for all n ≥ 1, by Corollary 5.4.10
we must have that LIMn→∞ an ≤ x, which is a contradiction. Therefore, if an ≤ x for all n ≥ 1, then
LIMn→∞ an ≤ x.

Furthermore, if an ≥ x for all n ≥ 1, then for the sake of contradiction suppose that LIMn→∞ an < x. We
know that LIMn→∞ an is a real number and since LIMn→∞ an < x we can find a rational number q such
that LIMn→∞ an < q < x by Proposition 5.4.14. However, since an ≥ x for all n ≥ 1, by Corollary 5.4.10
we must have that LIMn→∞ an ≥ x, which is a contradiction. Therefore, if an ≥ x for all n ≥ 1, then
LIMn→∞ an ≥ x.

§5.5 The least upper bound property

5.5.1. Let E be a subset of the real numbers R, and suppose that E has a least upper bound M which is a
real number, i.e., M = sup(E). Let −E be the set

−E := {−x : x ∈ E}

Show that −M is the greatest lower bound of −E, i.e., −M = inf(−E).

Proof. Since M = sup(E) we know that M ≤ U for all upper bounds U of E. That is, if x ∈ E then
x ≤ M ≤ U . Now, if we multiply this inequality on all sides by −1 we have that −x ∈ −E such that
−x ≥ −M ≥ −U for all lower bounds −U . Therefore, −M is the greatest lower bound of −E, i.e.,
−M = inf(−E).

5.5.2. Let E be a non-empty subset of R, let n ≥ 1 be an integer, and let L < K be integers. Suppose that
K/n is an upper bound for E, but that L/n is not an upper bound for E. Without using Theorem 5.5.9,
show that there exists an integer L < m ≤ K such that m/n is an upper bound for E, but that (m− 1)/n
is not an upper bound for E. (Hint: prove by contradiction, and use induction. It may also help to draw a
picture of the situation.)



Proof. For the sake of contradiction let us assume that for some n ≥ 1 that there does not exist an integer
L < m ≤ K such that m/n is an upper bound for E, but that (m− 1)/n is not an upper bound for E. Let
k be a positive integer where this is the case so that an integer m does not exist such that m/k is an upper
bound for E, but that (m− 1)/k is not an upper bound for E. Since L < K and L/n is not an upper bound
for E and K/n is an upper bound for E for n ≥ 1 by hypothesis, we see that L/k is not an upper bound for
E and that K/k is an upper bound for E. Now, since L and K are arbitrary, let m = K and m− 1 = L so
that L < m ≤ K becomes true. Obviously m/k = K/k is an upper bound for E and also (m− 1)/k = L/k
is not an upper bound for E, which is a contradiction that m did not exist. Therefore, we conclude that
there exists an integer L < m ≤ K such that m/n is an upper bound for E, but that (m − 1)/n is not an
upper bound for E for any n ≥ 1.

5.5.3. Let E be a non-empty subset of R, let n ≥ 1 be an integer, and let m,m′ be integers with the
properties that m/n and m′/n are upper bounds for E, but (m−1)/n and (m′ − 1) /n are not upper bounds
for E. Show that m = m′. This shows that the integer m constructed in Exercise 5.5.2 is unique. (Hint:
again, drawing a picture will be helpful.)

Proof. For the sake of contradiction let us suppose that m 6= m′. Then either m > m′ or m < m′. If m > m′

then m/n > m′/n. But this means that (m − 1)/n ≥ m′/n showing that (m − 1)/n is an upper bound, a
contradiction. Similarly, if m < m′ then m/n < m′/n. But this means that m/n ≤ (m′− 1)/n showing that
(m′ − 1)/n is an upper bound, a contradiction. Therefore, m = m′.

5.5.4. Let q1, q2, q3, . . . be a sequence of rational numbers with the property that |qn − qn′ | ≤ 1
M whenever

M ≥ 1 is an integer and n, n′ ≥ M . Show that q1, q2, q3, . . . is a Cauchy sequence. Furthermore, if
S := LIMn→∞ qn show that |qM − S| ≤ 1

M for every M ≥ 1. (Hint: use Exercise 5.4.8.)

Proof. To show that (qn)
∞
n=1 is a Cauchy sequence we need to show that it is eventually ε-close for all ε > 0.

Since M ≥ 1 let ε′ = 1/M > 0. Then since we have the property |qn− qn′ | ≤ 1/M = ε′ for n, n′ ≥M , we see
that this sequence is eventually ε′-close. Now, since 0 < ε′ ≤ 1 we see that this sequence is also eventually
ε-close for any 0 < ε′ ≤ 1 < ε. Therefore, (qn)

∞
n=1 is a Cauchy sequence.

Furthermore, if S := LIMn→∞ qn then we know that S is a real number by Definition 5.3.1. From Exercise
5.4.8 we then know that either qM ≤ S or qM ≥ S for M ≥ 1. That is, each element qM of the Cauchy
sequence (qn)

∞
n=1, is either less than or equal to S or greater than or equal to S. Therefore,

5.5.5. Establish an analogue of Proposition 5.4.14, in which ”rational” is replaced by ”irrational”.

Proof. We need to show that we can find an irrational number between any two real numbers.

If x < y then by Proposition 5.5.12 we know that there exists a positive real number, which is not rational,
z such that z2 = 2. Then z + x < z + y and since z + x and z + y are both real numbers we know there
exists a rational number q such that z + x < q < z + y. Thus, we have that x < q − z < y and therefore,
between any two real numbers we can find an irrational number. (Note: we have not used the notation

√
2

as this hasn’t been introduced yet but will appear in the next section.)

§5.6 Real exponentiation, part I

5.6.1. Prove Lemma 5.6.6. (Hints: review the proof of Proposition 5.5.12. Also, you will find proof by
contradiction a useful tool, especially when combined with the trichotomy of order in Proposition 5.4.7 and



Proposition 5.4.12. The earlier parts of the lemma can be used to prove later parts of the lemma. With part
(e), first show that if x > 1 then x1/n > 1, and if x < 1 then x1/n < 1.)

Proof. Lemma 5.6.6. Let x, y ≥ 0 be non-negative reals, and let n,m ≥ 1 be positive integers.

(a) If y = x1/n, then yn = x.

Let E be the set {y ∈ R : y ≥ 0 and yn ≤ x} so that x1/n := supE. We will show that yn = x.
We argue this by contradiction. We show that both yn < x and yn > x lead to contradictions. First
suppose that yn < x. Let 0 < ε < 1 be a small number; then we have

(y + ε)n =

(
n

0

)
ynε0 +

(
n

1

)
yn−1ε1 +

(
n

2

)
yn−2ε2 + · · ·+

(
n

n− 1

)
y1εn−1 +

(
n

n

)
y0εn

= yn +

[(
n

1

)
yn−1 +

(
n

2

)
yn−2ε+ · · ·+

(
n

n− 1

)
y1εn−2 +

(
n

n

)
y0εn−1

]
ε

Let Z denote the value in the square brackets above. Since yn < x we can choose an 0 < ε < 1 such
that yn + Zε < x, thus (y + ε)n < x. However, by hypothesis y = x1/n so therefore (x1/n + ε)n < x
and by construction of E this means that x1/n + ε ∈ E. This contradicts the fact that x1/n is an upper
bound of E.

Now suppose that yn > x. Let 0 < ε < 1 be a small number; then we have

(y − ε)n =

(
n

0

)
ynε0 −

(
n

1

)
yn−1ε1 +

(
n

2

)
yn−2ε2 − · · · ±

(
n

n− 1

)
y1εn−1 ∓

(
n

n

)
y0εn

= yn −
[(
n

1

)
yn−1 +

(
n

2

)
yn−2ε− · · · ±

(
n

n− 1

)
y1εn−2 ∓

(
n

n

)
y0εn−1

]
ε

(Note: ± and ∓ denote the signs in the binomial expansion. If n is odd, use the top signs while if n is
even use the bottom signs. This actually doesn’t make a difference in the analysis below.)

Again, let Z denote the value in the square brackets above. Since yn > x we can choose an 0 < ε < 1
such that yn−Zε > x, thus (y−ε)n > x. However, by hypothesis y = x1/n so therefore (x1/n−ε)n > x.
But then this implies that x1/n − ε ≥ x for all y ∈ E. Thus x1/n − ε is an upper bound for E, which
contradicts the fact that x1/n is the least upper bound of E. From these two contradictions we see that
yn = x, as desired.

(b) Conversely, if yn = x, then y = x1/n.

Let E be the set {y ∈ R : y ≥ 0 and yn ≤ x} so that x1/n := supE. We will show that y = x1/n. We
argue this by contradiction. We show that both y < x1/n and y > x1/n lead to contradictions. First
suppose that y < x1/n. Now, since yn = x by Definition 5.6.4 we must have that y ∈ E. We will show
that it is larger than or equal to any other element of E and therefore is an upper bound. Let y′ ∈ E
such that y′ 6= y and for sake of contradiction suppose that y′ > y. Then, by Proposition 4.3.12(b)
we must have that y′

n

> yn = x. But this means that y′ /∈ E, a contradiction. Therefore, we must
have that y′ ≤ y and therefore y is an upper bound of E. But y < x1/n so therefore x1/n is not supE,
a contradiction. Now suppose that y > x1/n. Now, since yn = x by Definition 5.6.4 we must have
that y ∈ E. But if y > x1/n this means that x1/n is not an upper bound for E, a contradiction since
x1/n = supE. From these two contradictions we see that y = x1/n, as desired.

(c) x1/n is a positive real number.

We are given that x ≥ 0 and that n ≥ 1. If x = 0 then x1/n = 0 which is a non-negative real number
and not a positive real number so I am not entirely sure why Tao has this part of the Lemma stated



as such. Let us assume that x > 0. Then, from Definition 5.6.4 we must have that x1/n is a positive
real number as it is the supremum of the set E = {y ∈ R : y ≥ 0 and yn ≤ x} and as we can see, since
x > 0, there will be some positive real numbers in this set and therefore the supremum of E must be
some positive real number.

(d) We have x > y if and only if x1/n > y1/n.

Let E1 = {y′ ∈ R : y′ ≥ 0 and y′
n ≤ x} and E2 = {y′′ ∈ R : y′′ ≥ 0 and y′′

n ≤ y}.

If x > y then there exists y′ ∈ E1 such that y′ /∈ E2 and therefore E2 ⊂ E1. Thus, supE2 < supE1

and hence y1/n < x1/n. Conversely, if x1/n > y1/n then supE1 > supE2 and therefore E2 ⊂ E1. Thus,
there exists y′ ∈ E1 such that y′ /∈ E2 and hence x > y.

(e) If x > 1, then x1/k is a decreasing function of k. If x < 1, then x1/k is an increasing function of k. If
x = 1, then x1/k = 1 for all k.

First, note that

1. If x > 1 then for n ≥ 1, we have that x1/n > 11/n = 1.

2. If x < 1 then for n ≥ 1, we have that x1/n < 11/n = 1.

If x > 1, as k increases the values of y must decrease to make it so that yk ≤ x. Thus, supE will be
smaller as k grows and therefore x1/k is a decreasing function of k.

If x < 1, as k increases the values of y must increase to make it so that yk ≤ x. This may seem
counter-intuitive but we must remember that 0 ≤ y < 1. Thus, supE will be larger as k grows and
therefore x1/k is an increasing function of k.

If x = 1 then, since exponentiation is just repeated multiplication, we must have that 1 to any power
is equal to 1 since 1 multiplied by itself no matter how many times, is still 1. Thus, when x = 1,
x1/k = 11/k = 1 for all k.

(f) We have (xy)1/n = x1/ny1/n.

Let E1 = {y′ ∈ R : y′ ≥ 0 and y′
n ≤ x} and E2 = {y′′ ∈ R : y′′ ≥ 0 and y′′

n ≤ y}.

Since y′
n ≤ x and y′′

n ≤ y then y′
n

y ≤ xy from which we then see that y′
n

y′′
n ≤ y′

n

y ≤ xy and
therefore (y′y′′)n ≤ xy. Let E = {y′y′′ ∈ R : y′y′′ ≥ 0 and (y′y′′)n ≤ xy}.

For the sake of contradiction, suppose that (xy)1/n > x1/ny1/n. Now, if y′ ∈ E1 then y′ ≤ (supE1 =
x1/n) and if y′′ ∈ E2 then y′′ ≤ (supE2 = y1/n). Since y′, y′′ ≥ 0 starting from y′ ≤ x1/n we must
have that y′y′′ ≤ x1/ny′′ ≤ x1/ny1/n and therefore y′y′′ ≤ x1/ny1/n which shows that x1/ny1/n is an
upper bound for E, which is a contradiction as (xy)1/n is the supremum of E. Conversely, suppose that
(xy)1/n < x1/ny1/n. As we saw, any element y′y′′ of E has the property that y′y′′ ≤ x1/ny1/n. Since
(xy)1/n < x1/ny1/n we must have that x1/ny1/n − (xy)1/n > 0. Let us denote this positive number as
ε. Then we must have that (xy)1/n + ε ≤ x1/ny1/n, and therefore ((xy)1/n + ε) ∈ E, a contradiction
as this shows that (xy)1/n is not an upper bound of E. From these two contradictions we see that
(xy)1/n = x1/ny1/n, as desired.

(g) We have (x1/n)1/m = x1/nm.

Let E1 = {y ∈ R : y ≥ 0 and ym ≤ x1/n} and E2 = {y ∈ R : y ≥ 0 and ynm ≤ x}. Thus, (x1/n)1/m =
supE1 and x1/nm = supE2. Now we will show that E1 = E2 and therefore (x1/n)1/m = x1/nm.



To do this, we will simply show that the inequality expressions that define these sets are equal which
means the sets are equal, which will give us the result desired. That is, we need to show that ym ≤ x1/n
and ynm ≤ x are the same. For ym ≤ x1/n, we must have that (ym)n ≤ (x1/n)n. Now, let u = x1/n

and from part (a) of this Lemma we then know that un = x. Thus, (ym)n ≤ x and from Proposition
5.6.3 we know that (ym)n = ymn = ynm so that we have ynm ≤ x. Therefore, E1 = E2 showing that
(x1/n)1/m = x1/nm.

5.6.2. Prove Lemma 5.6.9. (Hint: you should rely mainly on Lemma 5.6.6 and on algebra.)

Proof. Lemma 5.6.9. Let x, y > 0 be positive reals, and let q, r be rationals.

Let q = a/b and r = c/d with a, c being integers and b, d being positive integers.

(a) x1 is a positive real.

From Lemma 5.6.6(c) since 1/1 = 1 we have that x1 is a positive real number.

(b) xq+r = xqxr and (xq)r = xqr.

xq+r = xa/b+c/d

= x(ad+bc)/bd

= (x1/bd)(ad+bc) [Def. 5.6.7]

= xad/bdxbc/bd [Prop. 5.6.3]

= xa/bxc/d

= xqxr

(xq)r = ((x1/b)a)c/d [Def. 5.6.7]

= (((x1/b)a)1/d)c [Def. 5.6.7]

= (((x−b)a)−d)c [Def. 5.6.2]

= x(−b)a(−d)c [Prop. 4.3.12(a)]

= xac/bd [Def. 5.6.2]

= xqr

(c) x−q = 1/xq.

x−q = x−(a/b)

= (x1/b)−a [Def. 5.6.7]

= 1/(x1/b)a [Def. 5.6.2]

= 1/xq

(d) If q > 0, then x > y if and only if xq > yq.

If x > y then

x > y



x1/b > y1/b [Lemma 5.6.6(d)]

Let X = x1/b and Y = y1/b so that

X > Y

Xa > Y a [Prop. 4.3.12(b)]

(x1/b)a > (y1/b)a

xq > yq [Def. 5.6.7]

The converse argument is the reverse of the above.

(e) If x > 1, then xq > xr if and only if q > r. If x < 1, then xq > xr if and only if q < r.

If x > 1 and q > r then

q > r

a/b > c/d

ad > bc

xad > xbc [x > 1 and Def. 4.3.9]

(xa)d > (xc)b [Prop. 4.3.12(a)]

Let X1 = (xa)d and X2 = (xc)b so that

X1 > X2

(X1)1/bd > (X2)1/bd [Lemma 5.6.6(d)]

(xa)1/b > (xc)1/d

(x1/b)a > (x1/d)c [Lemma 5.6.9(b)]

xq > xr

The converse argument is the reverse of the above.

If x < 1 and q < r then

q < r

a/b < c/d

ad < bc

xad > xbc [x < 1 and Def. 4.3.9]

(xa)d > (xc)b [Prop. 4.3.12(a)]

Let X1 = (xa)d and X2 = (xc)b so that

X1 > X2

(X1)1/bd > (X2)1/bd [Lemma 5.6.6(d)]

(xa)1/b > (xc)1/d

(x1/b)a > (x1/d)c [Lemma 5.6.9(b)]



xq > xr

The converse argument is the reverse of the above.

5.6.3. If x is a real number, show that |x| =
(
x2

)1/2
.

Proof. If x is a real number then by definition |x| = −x for x < 0 and |x| = x for x ≥ 0. For non-negative x
we obviously have that (x2)1/2 = x. For negative x we have that ((−x)2)1/2 = ((−x)(−x))1/2 = (x2)1/2 = x.
Therefore, |x| = (x2)1/2.


