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Chapter 1 - THE REAL AND COMPLEX NUMBER SYSTEMS

Exercises:

Unless the contrary is explicitly stated, all numbers that are mentioned in these exercises are understood to
be real.

1. If r is rational (r 6= 0) and x is irrational, prove that r + x and rx are irrational.

Proof. Let r = m/n for integers m and n.

If r + x is rational, then for integers q and p.

r + x = p/q

x = = p/q −m/n
= (pn−mq)/(qn)

which is a rational number and a contradiction.

Furthermore, if rx is rational, then

rx = p/q

(m/n)x = p/q

x = (pn)/(mq)

which is a rational number and a contradiction.

Therefore, if r is rational (r 6= 0) and x is irrational, then r + x and rx are irrational.

2. Prove that there is no rational number whose square is 12.

Proof. If (m/n)2 = 12, then for integers m and n that do not have a common factor

m2/n2 = 12

m2/n2 = 3 · 4
m2 = 3 · 4 · n2

3 is a factor of m2 and therefore m. If m = (3r) with integer r, then

(3r)2 = 3 · 4 · n2

3r2 = 4 · n2

3 is also a factor of n2 and therefore n, which is a contradiction.

Therefore, there is no rational number whose square is 12.

3. Prove proposition 1.15.



Proof.

(a) If x 6= 0 and xy = xz then y = z.

xy = xz

(1/x)(xy) = (1/x)(xz)

y = z

(b) If x 6= 0 and xy = x then y = 1.

xy = x

(1/x)(xy) = (1/x)x

y = 1

(c) If x 6= 0 and xy = 1 then y = 1/x.

xy = 1

(1/x)(xy) = (1/x)

y = (1/x)

(d) If x 6= 0 then 1/(1/x) = x.

1/(1/x) = 1 · x/1
= x

4. Let E be a nonempty subset of an ordered set; suppose α is a lower bound on E and β is an upper bound
of E. Prove that α ≤ β.

Proof. If α ≤ x, ∀x ∈ E and x ≤ β,∀x ∈ E, then α ≤ x ≤ β =⇒ α ≤ β.

5. Let A be a nonempty set of real numbers which is bounded below. Let −A be the set of all numbers −x,
where x ∈ A. Prove that

inf A = − sup(−A).

Proof. If α = inf A, then α ≤ x,∀x ∈ A. If β = −α, then

−α ≥ −x, ∀(−x) ∈ −A
β ≥ −x, ∀(−x) ∈ −A

Since α was the infimum of A, β is the supremum for −A. Therefore, since α = inf A and β = sup(−A) we
have that

−α = β

− inf A = sup(−A)

inf A = − sup(−A).



6. Fix b > 1.

(a) If m,n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

(bm)1/n = (bp)1/q

Proof.

(bm)1/n = bm/n

= br

= bp/q

= (bp)1/q

Hence it makes sense to define

br = (bm)1/n

(b) Prove that br+s = brbs if r and s are rational.

Proof. If r = m/n and s = p/q, then

br+s = bm/n+p/q

= b(mq+pn)/nq

= (bmq+pn)1/nq

= (bmqbpn)1/nq [law of exponents for integer exponents]

= (bmq)1/nq(bpn)1/nq [Corollary of Theorem 1.21]

= (bmq/nq)(bpn/nq)

= bm/nbp/n

= brbs

(c) If x is real, define B(x) to be the set of all numbers bt, where t is rational and t ≤ x. Prove that

br = supB(r)

when r is rational.

Proof. When r is rational and t ≤ r we have that bt ≤ br and therefore br is an upper bound for B(r).
Additionally, br ∈ B(r) so that br ≤ U , for any upper bound U . Therefore, br = supB(r) when r is
rational.

Hence it makes sense to define

bx = supB(x)

for ever real x.

(d) Prove that bx+y = bxby for all real x and y.

Proof. From part (c) we know that bx = supB(x), therefore we see that bxby = supB(x) supB(y).
Now we need to show that bx+y = supB(x) supB(y).



If bt ∈ B(x+ y), then t ≤ x+ y. Let t = r + s with r ≤ x and s ≤ y so that

bt = br+s

= brbs

≤ supB(x) supB(y)

and therefore supB(x) supB(y) is an upper bound for B(x+ y).

Now we will show that it is also the least upper bound. Let n ∈ B(x+y) and 0 < n < supB(x) supB(y).

Then 0 <
n

supB(x)
< supB(y). Let m =

1

2

[
n

supB(x)
+ supB(y)

]
so that

n

supB(x)
< m < supB(y).

Therefore, since

n

supB(x)
< m =⇒ n

m
< supB(x)

Now, with the same argument we used for m above, we know that there exists u ∈ B(x) such that
n

m
< u < supB(x). Again, using the same argument, since m < supB(y), there exists v ∈ B(y) such

that m < v < supB(y). This shows us that

n =
n

m
·m < u · v < supB(x) supB(y)

and since uv ∈ B(x+ y), we see that n is not an upper bound and thus supB(x) supB(y) is the least
upper bound of B(x+ y).

Therefore, bx+y = bxby.

7. Fix b > 1, y > 0, and prove that there is a unique real x such that bx = y, by completing the following
outline. (This x is called the logarithm of y to the base b.)

(a) For any positive integer n, bn − 1 ≥ n(b− 1).

Proof.
base case: n = 1, b1 − 1 ≥ 1(b− 1).

induction hypothesis: n = k, bk − 1 ≥ k(b− 1).

induction step: Let n = k + 1. Then

bk+1 − 1 ≥ (k + 1)(b− 1)

bbk − 1 ≥ kb− k + b− 1

bk+1 − b ≥ k(b− 1)

b(bk − 1) ≥ k(b− 1)

which holds due to induction hypothesis and b > 1.

(b) Hence b− 1 ≥ n(b1/n − 1).

Proof. Since

b > 1

(b)1/n > (1)1/n

b1/n > 1



we see that we can swap b for b1/n as the criteria is still met from part (a), and therefore b − 1 ≥
n(b1/n − 1).

(c) If t > 1 and n > (b− 1)(t− 1), then b1/n < t.

Proof. From part (b),

b− 1 ≥ n(b1/n − 1)

b− 1 > (b− 1)(t− 1)(b1/n − 1)

1

(b− 1)
(b− 1) >

1

(b− 1)
(b− 1)(t− 1)(b1/n − 1)

1 > (t− 1)(b1/n − 1)

1 > tb1/n − t− b1/n + 1

t > b1/n(t− 1)

t/(t− 1) > b1/n

If t > 1, then t > t/(t− 1) > b1/n.

(d) If w is such that bw < y, then bw+(1/n) < y for sufficiently large n; to see this, apply part (c) with
t = yb−w.

Proof. From part (c),

b1/n < t

=⇒ b1/n < yb−w

=⇒ bw(b1/n) < ybw(b−w)

=⇒ bw+1/n < y

(e) If bw > y, then bw−(1/n) > y for sufficiently large n.

Proof. Same as proof for (d) but with t = y−1bw.

(f) Let A be the set of all w such that bw < y, and show that x = supA satisfies bx = y.

Proof. If x = supA, then there are three possible cases: bx < y, bx > y, or bx = y.

If bx < y, then x ∈ A and from part (d) x+ (1/n) ∈ A for sufficiently large n. This contradicts the fact
that x is an upper bound for A.

If bx > y, then from part (e) x − (1/n) for sufficiently large n. This contradicts the fact that x is the
least upper bound.

The only possibility left is that bx = y.

(g) Prove that this x is unique.

Proof. If s satisfies the above properties, then

bs = y = bx

b−sbs = bxb−s



1 = bxb−s

1 = bx−s

=⇒ x− s = 0

=⇒ x = s

8. Prove that no order can be defined in the complex field that turns it into an ordered field. Hint : −1 is a
square.

Proof. From definition 1.17 (ii) for an ordered field F : xy > 0 if x ∈ F , y ∈ F , x > 0, y > 0.

For the complex field, if x = y = i, then xy = i2 = −1 ≯ 0.

9. Suppose z = a+ bi, w = c+ di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns
the set of all complex numbers into an ordered set. (This type of order relations is called a dictionary order,
or lexicographic order, for obvious reasons.) Does this ordered set have the least-upper-bound property?

Proof. With the given constraints, z and w can have the cases:

a < c, b = d =⇒ z < w
a < c, b < d =⇒ z < w
a < c, b > d =⇒ z < w
a > c, b = d =⇒ z > w
a > c, b < d =⇒ z > w
a > c, b > d =⇒ z > w
a = c, b = d =⇒ z = w
a = c, b < d =⇒ z < w
a = c, b > d =⇒ z > w

We know that the real numbers is an ordered set so that a, b, c, d ∈ R satisfy conditions (i) and (ii) of
Definition 1.5. From the above cases we can see that z and w satisify (i). We will need to check that they
meet (ii):

Let t = e+ fi.

Cases (a < c, a > c): Let z < w and w < t. Then we know that a < c and c < e, where b, d, f can
be any value. Since the real numbers are transitive, we see that a < c, c < e =⇒ a < e. Therefore,
z < w,w < t =⇒ z < t. It is easy to see that the same reasoning applies for all the cases with a > c.

Cases (a = c): For the case that a = c and b = d we have the case of equality z = w. Obviously if z = w
and w = t we have that z = t.

For the other cases in this group we can test them in tandem. For the case a = c, b < d =⇒ z < w we can
use z and w as is while for the case a = c, b > d =⇒ z > w let us use t in place for z and leave w as is.
Then we get that a = c, b < d, e = c, f > d =⇒ a = c = e, b < d < f =⇒ a = e, b < f . Therefore, we see
that z < w,w < t =⇒ z < t.

This ordered set does not have the least-upper-bound property. To see this, let B = {(0, b) | b ∈ R} be a
subset of our ordered set. This subset has an upper bound, since (a, 0) > (0, b) for any a > 0. However, for
any proposed least upper bound (a, b), a > 0, we see that



(a, b) >
(a

2
, b
)
> (0, b)

Where
(a

2
, b
)

is an upper bound less than the proposed least upper bound, a contradiction.

10. Suppose z = a+ bi, w = u+ vi, and

a = ((|w|+ u)/2)1/2, b = ((|w| − u)/2)1/2.

Prove that z2 = w if v ≥ 0 and that z2 = w if v ≤ 0. Conclude that every complex number (with one
exception!) has two complex square roots.

Proof.

z2 = (a+ bi)(a+ bi)

= a2 + 2abi− b2

=
|w|+ u

2
+ 2i

[(
|w|+ u

2

)1/2( |w| − u
2

)1/2
]
− |w| − u

2

= u+ ((|w|+ u)(|w| − u))1/2i

= u+ vi

Note that here we used the fact that (xy)1/2 = x1/2y1/2. For (z)2 we get the same equations except there is
a negative sign for −2abi, which for v ≤ 0 gives us the same answer.

11. If z is a complex number, prove that there exists an r ≥ 0 and a complex number w with |w| = 1 such
that z = rw. Are w and r always uniquely determined by z?

Proof. Convert z to polar form.

z = a+ bi

= r cos(θ) + r sin(θ)i

= r(cos(θ) + sin(θ)i)

= rw

where w = cos(θ)+sin(θ)i and |w| = (cos(θ)2+sin(θ)2)1/2 = 1. Yes, w and r are always uniquely determined
by z because the phase and modulus depend on the complex number.

12. If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|.

Proof. Using induction with the same method that is used in Theorem 1.33 for proving part (e), which was
the base case of n=2.

|z1 + z2 + · · ·+ zn| ≤ |(z1 + z2 + · · ·+ zn−1) + zn|
≤ |z1 + z2 + · · ·+ zn−1|+ |zn|
≤ |z1|+ |z2|+ · · ·+ |zn−1|+ |zn|.



13. If x, y are complex, prove that

||x| − |y|| ≤ |x− y|.

Proof. This is the reverse triangle inequality. Since x = x− y + y

|x| = |(x− y) + y|
≤ |x− y|+ |y|

|x| − |y| ≤ |x− y|.

Starting with y = y − x+ x we would have arrived at |y| − |x| ≤ |y − x|. Therefore ||x| − |y|| ≤ |x− y|.

14. If z is a complex number such that |z| = 1, that is such that zz = 1, compute

|1 + z|2 + |1− z|2.

Proof.

|1 + z|2 + |1− z|2 = (1 + z)(1− z) + (1− z)(1− z)
= (1 + z)(1 + z) + (1− z)(1− z)
= 1 + z + z + 1 + 1− z − z + 1

= 4.

[Note: z + w = z + w by Theorem 1.31 (a)]

15. Under what conditions does equality hold in the Schwarz inequality?

The two sides of the Schwarz inequality are equal when the two vectors are linearly dependent. In other
words, when the vectors either point in the same or opposite direction, or if one of them is the zero vector.

16. Suppose k ≥ 3, x, y ∈ Rk, |x− y| = d > 0, and r > 0. Prove:

(a) If 2r > d, there are infinitely many z ∈ Rk such that

|z − x| = |z − y| = r.

Proof. For k = 3, with z ∈ R3, a sphere with center x = (x0, x1, x2) and radius r is the locus of all
points z = (z0, z1, z2) such that

r2 = (z0 − x0)2 + (z1 − x1)2 + (z2 − x2)2

r2 = |z − x|2

(r2)
1
2 = (|z − x|2)

1
2

r = |z − x|

The same argument shows that |z− y| is the radius of a sphere centered at y. Again, since d = |x− y|,
we see that d is the radius of a sphere centered at y. Showing this graphically can illuminate the
argument. Figure 1 shows a 2D slice of the three spheres in R3. As we can see, for the case of 2r > d,
the two spheres of equal radius r that are centered at x and y will intesect since 2r > d and two of
those solutions are z′ and z′′. We can’t see it in Figure 1, but in 3 dimensions, the two intesecting
spheres will intersect in a circle and thus there will be an infinite number of solutions z in this case.



y xz z

z′

z′′

Figure 1: The case 2r > d will have two intesecting
spheres of radius |z − x| and |z − y|.

(b) If 2r = d, there is exactly one such z.

Proof. For this case, we will have the situation where the two spheres of radius |z − x| and |z − y| will
have a single solution, namely where the two spheres touch at the single point z as seen in Figure 2.

y xz

Figure 2: The case 2r = d will have two spheres of radius
|z − x| and |z − y| touching at a single point z.

(c) If 2r < d, there is no such z.

Proof. For this case, we will have the situation where the two spheres of radius |z − x| and |z − y| will
not intersect and therefore there are no solutions.



y x

Figure 3: The case 2r < d will have two spheres of radius
|z − x| and |z − y| that do not intesect.

How must these statements be modified if k is 2 or 1?

For k = 2 (a) will go from an infinite amount of solutions to just two, for the two points where the circles
intesect such as seen in Figure 1. For k = 1 (a) will have no solutions. (b) and (c) will still have the same
answeres.

17. Prove that

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x ∈ Rk and y ∈ Rk. Interpret this geometrically, as a statement about parallelograms.

Proof. If x, y ∈ Rk, then by proof of Theorem 1.37 (e),

|x+ y|2 = (x+ y) · (x+ y)

= x · x+ 2x · y + y · y
|x− y|2 = x · x− 2x · y + y · y

Therefore,

|x+ y|2 + |x− y|2 = 2x · x+ 2y · y
= 2|x|2 + 2|y|2.

This result relates to parallelograms and can be viewed as the sum of the squares of the diagonals are equal
to the sum of the squares of the four sides.

18. If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk such that y 6= 0 but xy = 0. Is this also true if
k = 1?

Proof. If x = (x1, x2), let y = (x2,−x1). Then x · y = x1x2 − x2x1 = 0.

It is not true for k = 1 unless we are allowed to have y = 0.

19. Suppose a ∈ Rk, b ∈ Rk. Find c ∈ Rk and r > 0 such that



|x− a| = 2|x− b|

if and only if |x− c| = r. (Solution: 3c = 4b− a, 3r = 2|b− a|).

Proof. We are given the solution so all we need to do is verify it. We have that

|x− a| = 2|x− b|
(|x− a|)2 = (2|x− b|)2

3|x|2 + 2a · x− 8b · x− |a|2 + 4|b|2 = 0

|x− c| = r∣∣∣∣x− 4

3
b+

1

3
a

∣∣∣∣ =
2

3
|b− a| [from the given solution](∣∣∣∣x− 4

3
b+

1

3
a

∣∣∣∣)2

=

(
2

3
|b− a|

)2

|x|2 +
2

3
a · x− 8

3
b · x− 1

3
|a|2 +

4

3
|b|2 = 0

3|x|2 + 2a · x− 8b · x− |a|2 + 4|b|2 = 0 [multiply both sides by 3]

Therefore, both of these equations are equivalent.

20. With reference to the Appendix, suppose that property (III) were omitted from the definition of a cut.
Keep the same definitions of order and addition. Show that the resulting ordered set has the least-upper-
bound property, that addition satisfies axioms (A1) to (A4) (with a slightly different zero-element!) but that
(A5) fails.

Proof. Let us construct R from Q by using the definition of a cut as in the Appendix but without property
(III). By removing property (III) from the definition of a cut, the cut α now has a largest member. Let us
denote this largest member as u and thus, ∀p ∈ α we have p ≤ u. Therefore, u is an upper bound of α and
additionally it is the least upper bound since it is the maximum of α. Step 2 of the proof in the Appendix
shows us that R is an ordered set as this step relies on property (II) and not property (III). To show that
the ordered set R has the least-upper-bound property we can follow the same arguments as Step 3 of the
proof in the Appendix. However, since we no longer have property (III), this no longer needs to be verified.
We still see that γ ∈ R. Furthermore, it is clear that α ≤ γ for ever α ∈ A and as was shown in the proof of
the Appendix the same arguements hold to show that γ = supA.

Step 4 of the proof in the Appendix similarly will stay the same for (A1), (A2), and (A3), with the part in
(A1) needing to verify property (III) ommitted. For (A4) let O = {r | r ≤ 0} and α ∈ R. By defintion, we
can see that O is a cut. I claim O + α = α. First, we obviously have O + α ⊆ α since r + s ≤ s if r ≤ 0.
Therefore, r + s ∈ α if s ∈ α. Conversely α ⊆ O + α, since each s in α can be written as 0 + s.

Unfortunately, if O′ = {r | r < 0}, there is no element α ∈ R such that α + O′ = O. For α + O′ has no
largest element. If x = r+ s ∈ α+O′, where r ∈ α and s ∈ O′, there is an element t ∈ O′ with t > s, and so
r + t ∈ α+O′ and r + t > s. Since O has a largest element (namely 0), these two sets cannot be equal.


