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Chapter 0 - Preview

Exercises:

1.

(a) Make a list of the 16 primitive Pythagorean triples (a, b, c) with c ≤ 100, regarding (a, b, c) and (b, a, c)
as the same triple.

The textbook proves that all primitive Pythagorean triples are obtained from the formula (a, b, c) =
(2pq, p2 − q2, p2 + q2) by letting p and q range over all positive integers with p > q, such that p and q
have no common factor and are of opposite parity (i.e., one of them is even and the other is odd). We
will use the formula from this proposition in constructing a list of the 16 primitive Pythagorean triples
(a, b, c) with c ≤ 100, regarding (a, b, c) and (b, a, c) as the same triple.

(p, q) (a, b, c)
(2, 1) (4, 3, 5)
(3, 2) (12, 5, 13)
(4, 1) (8, 15, 17)
(4, 3) (24, 7, 25)
(5, 2) (20, 21, 29)
(5, 4) (40, 9, 41)
(6, 1) (12, 35, 37)
(6, 5) (60, 11, 61)
(7, 2) (28, 45, 53)
(7, 4) (56, 33, 65)
(7, 6) (84, 13, 85)
(8, 1) (16, 63, 65)
(8, 3) (48, 55, 73)
(8, 5) (80, 39, 89)
(9, 2) (36, 77, 85)
(9, 4) (72, 65, 97)

(b) How many more would there be if we allowed nonprimitive triples?

Instead of computing this by hand, let’s write use Python and our computers to compute this for us.
(Note — here we are using the programming language https://www.python.org/ and the interactive
shell https://ipython.org/ but this code can be adapted to a programming language of your choice
as it is relatively straight forward):

In [1]: def a(p,q):
...: return 2*p*q
...:

In [2]: def b(p,q):
...: return p**2-q**2
...:

In [3]: def c(p,q):
...: return p**2+q**2
...:

In [4]: triples = []

https://www.python.org/
https://ipython.org/


In [5]: for p in range (2 ,10):
...: for q in range(1,p):
...: if c(p,q) <= 100:
...: t = [a(p,q), b(p,q), c(p,q)]
...: ft = [b(p,q), a(p,q), c(p,q)]
...: if t not in triples and ft not in triples:
...: triples.append(t)
...: for n in range (2 ,21):
...: if n*c(p,q) <= 100:
...: t = [n*a(p,q), n*b(p,q), n*c(p,q)]
...: ft = [n*b(p,q), n*a(p,q), n*c(p,q)]
...: if t not in triples and ft not in triples:
...: triples.append(t)
...:
...:

In [6]: triples
Out [6]:
[[4, 3, 5],
[8, 6, 10],
[12, 9, 15],
[16, 12, 20],
[20, 15, 25],
[24, 18, 30],
[28, 21, 35],
[32, 24, 40],
[36, 27, 45],
[40, 30, 50],
[44, 33, 55],
[48, 36, 60],
[52, 39, 65],
[56, 42, 70],
[60, 45, 75],
[64, 48, 80],
[68, 51, 85],
[72, 54, 90],
[76, 57, 95],
[80, 60, 100],
[12, 5, 13],
[24, 10, 26],
[36, 15, 39],
[48, 20, 52],
[60, 25, 65],
[72, 30, 78],
[84, 35, 91],
[8, 15, 17],
[16, 30, 34],
[24, 45, 51],
[32, 60, 68],
[40, 75, 85],
[24, 7, 25],
[48, 14, 50],
[72, 21, 75],
[96, 28, 100],
[20, 21, 29],
[40, 42, 58],
[60, 63, 87],
[40, 9, 41],
[80, 18, 82],
[12, 35, 37],
[24, 70, 74],
[60, 11, 61],
[28, 45, 53],
[56, 33, 65],
[84, 13, 85],
[16, 63, 65],
[48, 55, 73],



[80, 39, 89],
[36, 77, 85],
[72, 65, 97]]

In [7]: len(triples)
Out [7]: 52

For c ≤ 100 we have 52 Pythagorean triples.

(c) How many triples (primitive or not) are there with c = 65?

In [8]: len([t for t in triples if t[2] == 65])
Out [8]: 4

From the output of part (b) we see that there are 4 triples with c = 65.

2.

(a) Find all the positive integer solutions of x2 − y2 = 512 by factoring x2 − y2 as (x + y)(x − y) and
considering the possible factorizations of 512.

Since 512 = 29 we must have that (x+ y) and (x− y) are powers of two whose product is 512. That is:

x2 − y2 = 512

x2 − y2 = (x+ y)(x− y) = 512

x2 − y2 = (x+ y)(x− y) = 512 = 29

Let m+ n = 9 so that (x+ y)(x− y) = 2m+n = 2m2n and hence (x+ y) = 2m and (x− y) = 2n. Since
(x+ y) > (x− y) we have that 2m > 2n and therefore m > n. There are only four ways to add up two
positive integers equal to 9, and these numbers, m and n, will lead us to the solutions.

8 + 1

7 + 2

6 + 5

5 + 4

=⇒

28+1

27+2

26+3

25+4

=⇒

2821

2722

2623

2524

=⇒

256 · 2
128 · 4
64 · 8
32 · 16

Therefore, all the positive integer solutions, (x, y), of x2 − y2 = 512 are:

(129, 127), (66, 62), (36, 28), and (24, 8)

(b) Show that the equation x2 − y2 = n has only a finite number of integer solutions for each value of
n > 0.

We need to show that there are not an infinite amount of solutions.

Factoring x2 − y2 = n as (x+ y)(x− y) = n, with n a finite number, shows us that there can only be
a finite number of combinations (x, y) that are integer solutions to this equation.

Therefore, the equation x2−y2 = n has only a finite number of integer solutions for each value of n > 0
as there are not an infinite amount of solutions.



(c) Find a value of n > 0 for which the equation x2 − y2 = n has at least 100 different positive integer
solutions.

From the solution to part (a) we saw that for a number n that is a power of two, say n = 2t to be

general, with an odd exponent we would have
t− 1

2
solutions to the equation x2− y2 = n = 2t. For an

even exponent we would have
t

2
solutions (use the same argument demonstrated in part (a) to arrive

at this conclusion). Therefore, n = 2200, as it has an even exponent, would have at least 100 different
positive integer solutions.

3.

(a) Show that there are only a finite number of Pythagorean triples (a, b, c) with a equal to a given number
n.

From the formulas for Pythagorean triples we can see that as we iterate over p and q to generate the
triples that there can only be a finite number of Pythagorean triples (a, b, c) with a = 2pq equal to a
given number n due to the fact that p and q are growing in magnitude as we generate the triples. Thus,
a given n for a will get passed at some point as more and more triples are generated.

(b) Show that there are only a finite number of Pythagorean triples (a, b, c) with c equal to a given number
n.

Same argument as above but this time applied to c = p2 + q2.

4. Find an infinite sequence of primitive Pythagorean triples where two of the numbers in each triple differ
by 2.

The sequence created from n +
4n+ 3

4n+ 4
such that the improper fraction’s numerator and denominator are

the sides a and b and then the hypotenuse will always be a difference of 2 with the side a. Some examples:

1 +
7

8
=

15

8
=⇒ (15, 8, 17) [n = 1]

2 +
11

8
=

35

12
=⇒ (35, 12, 37) [n = 2]

3 +
15

16
=

63

16
=⇒ (63, 16, 65) [n = 3]

...

5. Find a right triangle whose sides have integer lengths and whose acute angles are close to 30 and 60
degrees by first finding the irrational value of r that corresponds to a right triangle with acute angles exactly
30 and 60 degrees, then choosing a rational number close to this irrational value of r.

A triangle with acute angles exactly 30 and 60 degrees has its sides in the proportion 1 :
√

3 : 2. Since√
3 ≈ 1.732 we can see that the ratio of the two shorter legs is approximately this amount (due to the unity

of the other leg). Taking a look at some Pythagorean triples we can see that (95, 168, 193) has the ratio of
168

95
≈ 1.768, for the two shorter legs. This right triangle has, θ = arccos

95

193
≈ 60.5 degrees. Thus, we have

a right triangle that has angles approximately 60.5 and 29.5 degrees for its acute angles.

6. Find a right triangle whose sides have integer lengths and where one of the two shorter sides is approx-
imately twice as long as the other, using a method like the one in the preceding problem. (One possible
answer might be the (8, 15, 17) triangle, or a triangle similar to this, but you should do better than this.)



In a similar vein to the last problem, if we look at a right triangle that has sides of proportion 1 : 2 :
√

5

we see that
√

5 ≈ 2.23. Once again, taking the ratio
2.23

1
= 2.23 and looking at Pythagorean triples for a

similar ratio among the hypotenuse and one of the shorter legs we see the triple (105, 208, 233) has the ratio
233

105
≈ 2.22 and additionally, it is also easy to see that the shortest leg is almost twice as long as the other.

7. Find a rational point on the sphere x2 + y2 + z2 = 1 whose x, y, and z coordinates are nearly equal.

The formulas for rational points on the unit sphere are:

x =
2u

u2 + v2 + 1
y =

2v

u2 + v2 + 1
z =

u2 + v2 − 1

u2 + v2 + 1

The question doesn’t specify what level of precision is asked for but we can see that if we set u = v =
11

8

that the numerators become
11

4
= 2.75 for x and y, while for z it is

89

32
≈ 2.781. Thus, we have the rational

point

(
88

153
,

88

153
,

89

153

)
.

8.

(a) Derive formulas that give all the rational points on the circle x2+y2 = 2 in terms of a rational parameter
m, the slope of the line through the point (1, 1) on the circle. (The value m = ∞ should be allowed
as well, yielding the point (1,−1). ) The calculations may be a little messy, but they work out fairly
nicely in the end to give

x =
m2 − 2m− 1

m2 + 1
, y =

−m2 − 2m+ 1

m2 + 1

Starting with the equation y − 1 = m(x− 1) and solving for y we find y = mx−m+ 1. Now we plug
this into x2 + y2 = 2 so that:

x2 + (mx−m+ 1)2 = 2

x2 +m2x2 − 2m2x+ 2mx+m2 − 2m+ 1 = 2

(m2 + 1)x2 + (2m− 2m2)x+ (m2 − 2m− 1) = 0

Then, using the quadratic formula to solve for x we have:

x =
2m2 − 2m±

√
4(m−m2)2 − 4(m2 + 1)(m2 − 2m− 1)

2(m2 + 1)

x =
2m2 − 2m±

√
4m2 − 8m3 + 4m4 − 4m4 + 8m3 + 8m+ 4

2(m2 + 1)

x =
2m2 − 2m±

√
4m2 + 8m+ 4

2(m2 + 1)

x =
2m2 − 2m± 2

√
m2 + 2m+ 1

2(m2 + 1)

x =
2m2 − 2m± 2

√
(m+ 1)2

2(m2 + 1)

x =
2m2 − 2m± 2(m+ 1)

2(m2 + 1)



x =
m2 −m± (m+ 1)

m2 + 1

x =
m2 − 2m+ 1

m2 − 1
[for −]

x = 1 [for +]

Since we started from the rational point (1, 1) we will use the solution with the negative square root of
the quadratic formula. Plugging this back into the equation for y we have that:

y = mx−m− 1

y = m

(
m2 − 2m− 1

m2 + 1

)
−m− 1

y =

(
m3 − 2m2 −m

m2 + 1

)
−m− 1

y =

(
m3 − 2m2 −m−m(m2 + 1) +m2 + 1

m2 + 1

)
y =

(
m3 − 2m2 −m−m3 −m+m2 + 1

m2 + 1

)
y =
−m2 − 2m+ 1

m2 + 1

which gives us the two derived formulas.

(b) Using these formulas, find five different rational points on the circle in the first quadrant, and hence
five solutions of a2 + b2 = 2c2 with positive integers a, b, c.

Five such rational points are:

(
137

97
,

7

97

)
,

(
7

5
,

1

5

)
,

(
89

65
,

23

65

)
,

(
17

13
,

7

13

)
,

(
49

41
,

31

41

)

(c) The equation a2 + b2 = 2c2 can be rewritten as c2 = 1/2
(
a2 + b2

)
, which says that c2 is the average

of a2 and b2, or in other words, the squares a2, c2, b2 form an arithmetic progression. One can assume
a < b by switching a and b if necessary. Find four such arithmetic progressions of three increasing
squares where in each case the three numbers have no common divisors.

Four such progressions for coprime tuples (a2, c2, b2) are:

(1, 5, 9)→ 12 + 32 = 1 + 9 =⇒ 1

2
· 10 = 5

(9, 17, 25)→ 32 + 52 = 9 + 25 =⇒ 1

2
· 34 = 17

(9, 29, 49)→ 32 + 72 = 9 + 49 =⇒ 1

2
· 58 = 29

(25, 37, 49)→ 52 + 72 = 25 + 49 =⇒ 1

2
· 74 = 37

9.



(a) Find formulas that give all the rational points on the upper branch of the hyperbola y2 − x2 = 1.

A single rational point for the upper branch is (0, 1) as 12 − 02 = 1. From this rational point we can
see that we have a slope-intercept form of the linear equation through this point of y = mx+ 1. If we

denote the point where the line intersects the x-axis by (r, 0), then m = −1

r
so the equation for the

line can be rewritten as y = 1− x

r
(this is similar to the derivation in the textbook for the unit circle,

cf. p. 2). Plugging this equation for y back into the equation of the hyperbola we see that:

y2 − x2 = 1(
1− x

r

)2
− x2 = 1(

1− x

r

)(
1− x

r

)
− x2 = 1

1− 2x

r
+
x2

r2
− x2 = 1(

1

r2
− 1

)
x2 − 2x

r
= 0(

1

r2
− 1

)
x2 =

2x

r(
1

r2
− 1

)
x =

2

r(
1− r2

r2

)
x =

2

r

(1− r2)x = 2r

x =
2r

1− r2

Taking this equation for x we can now plug it back into the slope-intercept form of the linear equation

y = 1− x

r
so that we get:

y = 1− x

r

y = 1−

2r

1− r2
r

y = 1− 2

1− r2

y =
1− r2 − 2

1− r2

y =
−1− r2

1− r2

(b) Can you find any relationship between these rational points and Pythagorean triples?

Taking the above formulas for x and y we can plug in rational p and q in place of r similar to the
textbook’s derivation of the Pythagorean triples from the parameterization of the unit circle. You will
end up with equations:



x =
2pq

q2 − p2
y =
−q2 − p2

q2 − p2

such that a triple is:

(2pq,−q2 − p2, q2 − p2) = (a,−c,−b)

Thus, we have rational points of the hyperbola giving solutions to permuted Pythagorean triples!

10.

(a) Show that the equation x2 − 2y2 = ±3 has no integer solutions by considering this equation modulo 8.

As mentioned in the textbook, the squares mod 8 are 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 = 9 ≡ 1,
and 42 = 16 ≡ 0, so the squares of even numbers are 0 and 4 mod 8 and the squares of odd numbers
are 1 mod 8.

Therefore, the numbers we have overall are 0, 1, and 4. We need the right hand side to equal ±3 but
any combination of these numbers cannot be realized in x2 − 2y2 = ±3.

0− 2(0) = 0

0− 2(1) = −2

0− 2(4) = −8

1− 2(0) = 1

1− 2(1) = −1

1− 2(4) = −7

4− 2(0) = 4

4− 2(1) = 2

4− 2(4) = −4

Therefore, the equation x2 − 2y2 = ±3 has no integer solutions by considering this equation modulo 8.

(b) Show that there are no primitive Pythagorean triples (a, b, c) with a and b differing by 3.

There are probably other ways to show this but we will note the argument in the textbook (cf. p. 6)
that shows a and b cannot be of the form 4k + 2 and rather, they are of the form 2k + 1 and 4k.

Let k = 1, then a = 4k = 4(1) = 4 and b = 2k+ 1 = 2(1) + 1 = 3. If we were able to have a or b of the
form 4k + 2 then we could have a = 4k + 2 = 4(1) + 2 = 6 which shows that a− b = 3. However, this
shows that a and b differ by 3 which is not allowed as the form 4k + 2 is not allowed.

Therefore, there are no primitive Pythagorean triples (a, b, c) with a and b differing by 3.

This can also be answered by noticing that since a = 2pq and b = p2 − q2, we can write this as:

b− a = p2 − q2 − 2pq

= p2 − 2pq − q2

= (p− q)2 − 2q2

and with a change of variables as is done in the textbook for this quadratic form, we see that we have
x2 − 2y2, which is the same as in part (a) above and was shown not to have any solutions.



11. Show there are no rational points on the circle x2 + y2 = 3 using congruences modulo 3 instead of
modulo 4.

First, note that the squares mod 3 are 02 = 0, (±1)2 = 1, (±2)2 = 4 ≡ 1, which shows that even squares
are either 0 or 1 while odd squares are 1.

If the circle x2 + y2 = 3 had a rational point, this would yield a solution of the equation a2 + b2 = 3c2 and
in the same vein as the argument in the textbook, we see that a, b, and c have no common factor so a and
b cannot both be even. The left side of the equation is either 0 + 1, 1 + 0, or 1 + 1 (since a and b are not
both even). Thus, the left side of the equation is either 1 or 2 mod 3. However, the right side is either 3 · 0
or 3 · 1 mod 4.

Therefore, there are no rational points on the circle x2 + y2 = 3 using congruences modulo 3 instead of
modulo 4.

12. Show that for every Pythagorean triple (a, b, c) the product abc must be divisible by 60. (It suffices to
show that abc is divisible by 3, 4, and 5.)

The formula for producing the Pythagorean triples once again is:

(a, b, c) = (2pq, p2 − q2, p2 + q2)

where p > q, they are both coprime and they have opposite parity. Then, the product abc is:

2pq(p2 − q2)(p2 + q2)

which can also be written as

2pq(p4 − q4)

Now we will show that 3, 4, and 5 divide these products using congruences.

For 3:

The squares mod 3 are 0 and 1. If 3 | pq, we are done. If not, then 3 - p and 3 - q. Since 3 | p2 − 1 and
3 | q2 − 1 we see that 3 | (p2 − 1)− (q2 − 1) = (p2 − q2).

For 4:

Since p+ q is odd (due to them having opposite parity), then one of p, q is even and therefore 4 | 2pq.

For 5:

The squares mod 5 are 0, 1 and 4. If 5 | pq, we are done. If not, then 5 - p and 5 - q. Since 5 | p4 − 1 and
5 | q4 − 1 we see that 5 | (p4 − 1)− (q4 − 1) = (p4 − q4).

The above cases show that 3, 4, and 5 divide the factors of abc.

Therefore, for every Pythagorean triple (a, b, c) the product abc must be divisible by 60.

13. Using congruences modulo 8 show that primitive solutions of a2 + b2 + c2 = d2 must have d odd and
must have two of a, b, c even and the other odd.

We can assume that a, b, c, and d do not have a common factor. Then a, b, and c cannot all be even as that
would mean that d would also be even and then they would have the common factor of 2. Therefore, d must
be odd.



Since:

even number + even number = even number
odd number + odd number = even number
odd number + even number = odd number

If d is odd that means that a, b, and c are either all odd or that two of them are even and one is odd. Once
again, the squares mod 8 are 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 = 9 ≡ 1, and 42 = 16 ≡ 0, so the squares
of even numbers are 0 and 4 mod 8 and the squares of odd numbers are 1 mod 8. Therefore, the left hand
side could be either 1 + 1 + 1 (all odd), 4 + 4 + 1 (two even, one odd), 0 + 4 + 1 (two even, one odd), or
0 + 0 + 1 (two even, one odd). Since the right hand side is odd we know that we have 1 · 1 and we see that
the left hand side cannot be all odd and therefore must be one odd and the other two even. Among these
choices we also see that we must either have 4 + 4 + 1 or 0 + 0 + 1.

Therefore, using congruences modulo 8 we have shown that primitive solutions of a2 + b2 + c2 = d2 must
have d odd and must have two of a, b, c even and the other odd.


